GNU gprof

The GNU Profiler

This manual describes the GNU profiler, ‘gprof, and how you can use it to determine
which parts of a program are taking most of the execution time. We assume that you know how
to write, compile, and execute programs.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another
language, under the above conditions for modified versions.

TABLE OF CONTENTS

1. Introduction to Profilingccooiiiiiiiiiiee et 1
2. Compiling a Program for Profilingccccoeviieiiiiiiiiiiiieecceeeee e 1
3. Executing the PrO@ramcoooiiiiiiiiiiiee ettt e 2
4. gprof Command SUMMATYcccveriieeiieriieitienieeieeseeeieeseeeeteessseesseesssessseessaeeseesssesnsens 3
4.1 OULPUL OPLIONS .evreerieeririeeiiieeeieeerteeeeteeeetaeesstteessseeesseeasssaeessseeassseesssseessssesssseeessseeenns 4
4.2 ANALYSIS OPLIONS ..oeiviieiiieiiiieiieeieeieeeteeteeeteesteeeaeesteessbeesseessbeesaessseenseesnseesseessseenseas 7
4.3 MiSCellaneous OPLIONSccueeervieeriieeeiieeiieeeitieeeieeesteeesreeesseeesseeesseeessseeessseeessseeans 8
4.4 Depricated OPLIONSc.eeviieciieriieeiieiieeteesite et esttesteesseesaeesseessbeeseessseeseesssesseessseenns 9
L TN 41113 01T o1 PSR 9
5. Interpreting gProf's OULPULc.eeeiierieiiieieeieeriee ettt ettt e eesaeeesbeebeeesseeseeenseas 10
5.1 The FIat PrOfIlecouiiiiieiee et 10
5.2 The Call GIaphc.oooiiiiiieiece ettt b e st e et eeaaeenseennnes 12
5.2.1 The Primary LINEcccooouiiiiiiiiiiecciee ettt e 13
5.2.2 Lines for a Function's Callerscccoecerirriirieniniieiieeeeseeeeeee e 14
5.2.3 Lines for a Function's SUDTOULINESccceeriiiiiieiiieiieiieeiee et 15
5.2.4 How Mutually Recursive Functions Are Describedcccceevveevienienneennen. 16
5.3 Line-by-line Profilingccccooiiiiiiiiiiiiee e 18
5.4 The Annotated SOUrce LiStINGc.ccoiieiieiieiiieiiieeie ettt eneees 20
6. Inaccuracy of gProf OULPULc..oiiiiiiiee et 21
6.1 Statistical SAMPING EITOTcc.oooiiiiiiiiiiieiieiieee et 21
6.2 Estimating children TImMEScccceciiiiiiiiiiieceiie ettt 22
7. Answers to CommON QUESTIONScccuiieiivieiiiieeeieeeetee ettt e eeteeeeeteeeeereeeeereeeereeeeseeesareeens 22
8. Incompatibilities With UnNiX @Profccocuiiiiiiieiiieeieeeeeeee e 23
9. Details Of PrOfIIING ...cc.eoiuiiiiieiieeieeieeeee ettt ettt ebeessaeennaesaae e 24
9.1 Implementation of Profilingcccccooiiiiiiiiiii e 24
9.2 Profiling Data File FOrmatccccooieiiiiiiiiiiieieecccicce et 25
9.2.1 Histogram RECOTASooiuiiiiiiiiiiieiieee e 26
0.2.2 Call-Graph RECOTASceeeviieiiieiieiieeie ettt 26
9.2.3 Basic-Block Execution Count Recordsccoceeviiiiiiiiiiiiiiiienceeeeee 27
9.3 gprof's Internal OPEIationc.cccveeiieriieriieriieiieeteeeteerieeseeereesaeeseeseaeeaeeseneesaens 27
0.3.1 Debugging @Profooouieiiiiiieeie et 29

-1 -

1. Introduction to Profiling

Profiling allows you to learn where your program spent its time and which functions called
which other functions while it was executing. This information can show you which pieces of
your program are slower than you expected, and might be candidates for rewriting to make your
program execute faster. It can also tell you which functions are being called more or less often
than you expected. This may help you spot bugs that had otherwise been unnoticed.

Since the profiler uses information collected during the actual execution of your program,
it can be used on programs that are too large or too complex to analyze by reading the source.
However, how your program is run will affect the information that shows up in the profile data.
If you don't use some feature of your program while it is being profiled, no profile information
will be generated for that feature.

Profiling has several steps:

* You must compile and link your program with profiling enabled. *Note Compiling::.
* You must execute your program to generate a profile data file. *Note Executing::.

* You must run "gprof' to analyze the profile data. *Note Invoking::.

The next three chapters explain these steps in greater detail.

Several forms of output are available from the analysis.

The "flat profile" shows how much time your program spent in each function, and how
many times that function was called. If you simply want to know which functions burn most of
the cycles, it is stated concisely here. *Note Flat Profile::.

The "call graph" shows, for each function, which functions called it, which other functions
it called, and how many times. There is also an estimate of how much time was spent in the
subroutines of each function. This can suggest places where you might try to eliminate function

calls that use a lot of time. *Note Call Graph::.

The "annotated source" listing is a copy of the program's source code, labeled with the
number of times each line of the program was executed. *Note Annotated Source::.

To better understand how profiling works, you may wish to read a description of its
implementation. *Note Implementation::.

2. Compiling a Program for Profiling

The first step in generating profile information for your program is to compile and link it
with profiling enabled.

To compile a source file for profiling, specify the *-pg' option when you run the compiler.
(This is in addition to the options you normally use.)

To link the program for profiling, if you use a compiler such as ‘cc' to do the linking,
simply specify '-pg' in addition to your usual options. The same option, "-pg', alters either
compilation or linking to do what is necessary for profiling. Here are examples:

cc -g -c myprog.c utils.c -pg
gcc -0 myprog myprog.o utils.o -pg
gfortran -o test.exe test.f90 -pg

The “-pg' option also works with a command that both compiles and links:

cc -0 myprog myprog.c utils.c -g -pg

If you run the linker "1d' directly instead of through a compiler such as “cc', you may have
to specify a profiling startup file "gert0.0' as the first input file instead of the usual startup file
‘crt0.0'. In addition, you would probably want to specify the profiling C library, ‘libc_p.a', by
writing ‘-Ic_p' instead of the usual *-Ic'. This is not absolutely necessary, but doing this gives
you number-of-calls information for standard library functions such as ‘read' and ‘open'. For
example:

1d -o myprog /lib/gcrt0.o myprog.o utils.o -lc_p

If you compile only some of the modules of the program with *-pg', you can still profile the
program, but you won't get complete information about the modules that were compiled
without "-pg'. The only information you get for the functions in those modules is the total time
spent in them; there is no record of how many times they were called, or from where. This will
not affect the flat profile (except that the “calls' field for the functions will be blank), but will
greatly reduce the usefulness of the call graph.

If you wish to perform line-by-line profiling, you will also need to specify the *-g' option,
instructing the compiler to insert debugging symbols into the program that match program
addresses to source code lines. *Note Line-by-line::.

In addition to the -pg' and '-g' options, you may also wish to specify the "-a' option when
compiling. This will instrument the program to perform basic-block counting. As the program
runs, it will count how many times it executed each branch of each 'if' statement, each iteration
of each 'do' loop, etc. This will enable "gprof' to construct an annotated source code listing
showing how many times each line of code was executed.

3. Executing the Program

Once the program is compiled for profiling, you must run it in order to generate the
information that “gprof needs. Simply run the program as usual, using the normal arguments,
file names, etc. The program should run normally, producing the same output as usual. It will,
however, run somewhat slower than normal because of the time spent collecting and the writing
the profile data.

The way you run the program--the arguments and input that you give it--may have a
dramatic effect on what the profile information shows. The profile data will describe the parts
of the program that were activated for the particular input you use. For example, if the first
command you give to your program is to quit, the profile data will show the time used in
initialization and in cleanup, but not much else.

Your program will write the profile data into a file called "gmon.out' just before exiting. If
there is already a file called “gmon.out', its contents are overwritten. There is currently no way
to tell the program to write the profile data under a different name, but you can rename the file
afterward if you are concerned that it may be overwritten.

In order to write the ‘gmon.out' file properly, your program must exit normally: by
returning from ‘'main' or by calling “exit'. Calling the low-level function * exit' does not write
the profile data, and neither does abnormal termination due to an unhandled signal.

The "gmon.out' file is written in the program's *current working directory* at the time it
exits. This means that if your program calls “chdir', the "gmon.out' file will be left in the last
directory your program ‘chdir"d to. If you don't have permission to write in this directory, the
file is not written, and you will get an error message.

Older versions of the GNU profiling library may also write a file called "bb.out'. This file,
if present, contains an human-readable listing of the basic-block execution counts.
Unfortunately, the appearance of a human-readable "bb.out' means the basic-block counts didn't
get written into ‘gmon.out'. The Perl script ‘bbconv.pl', included with the “gprof source
distribution, will convert a "bb.out' file into a format readable by "gprof'.

4. gprof' Command Summary

After you have a profile data file ‘gmon.out', you can run ‘gprof to interpret the
information in it. The "gprof' program prints a flat profile and a call graph on standard output.
Typically you would redirect the output of "gprof' into a file with >".

You run ‘gprof' like this:

gprof OPTIONS [EXECUTABLE-FILE [PROFILE-DATA-FILES...]] [> OUTFILE]

Here square-brackets indicate optional arguments.

If you omit the executable file name, the file "a.out' is used. If you give no profile data file
name, the file "gmon.out' is used. If any file is not in the proper format, or if the profile data
file does not appear to belong to the executable file, an error message is printed.

You can give more than one profile data file by entering all their names after the
executable file name; then the statistics in all the data files are summed together.

The order of these options does not matter.

4.1 Output Options

These options specify which of several output formats “gprof' should produce.

Many of these options take an optional "symspec" to specify functions to be included or
excluded. These options can be specified multiple times, with different symspecs, to include or
exclude sets of symbols. *Note Symspecs::.

Specifying any of these options overrides the default (*-p -q'), which prints a flat profile
and call graph analysis for all functions.

"-A[SYMSPEC]'
‘—-—annotated-source [=SYMSPEC]'
The °"-A' option causes ‘“gprof' to print annotated source code. If

SYMSPEC is specified, print output only for matching symbols. *Note
Annotated Source::.

Cp

‘—-brief'
If the "-b' option i1is given, “gprof' doesn't print the verbose
blurbs that try to explain the meaning of all of the fields in the
tables. This is useful if you intend to print out the output, or are
tired of seeing the blurbs.

"-C[SYMSPEC]'

‘-—exec-counts [=SYMSPEC]'
The "-C' option causes ‘gprof' to print a tally of functions and the number of times each
was called. If SYMSPEC is specified, print tally only for matching symbols.

If the profile data file contains basic-block count records, specifing the *-I' option, along
with *-C', will cause basic-block execution counts to be tallied and displayed.

S
"——file-info'
The '-1i' option causes “gprof' to display summary information about
the profile data file(s) and then exit. The number of histogram, call

graph, and basic-block count records is displayed.

-1 DIRS'

‘—-directory-path=DIRS'
The “-I' option specifies a list of search directories in which to find source files.
Environment variable GPROF PATH can also be used to convery this information.
Used mostly for annotated source output.

"—-J[SYMSPEC]'
‘—--no-annotated-source [=SYMSPEC] '

The *-J' option causes ‘gprof not to print annotated source code. If SYMSPEC is
specified, "gprof prints annotated source, but excludes matching symbols.

‘—%print—path'
Normally, source filenames are printed with the path component suppressed. The "-L'
option causes "gprof to print the full pathname of source filenames, which is
determined from symbolic debugging information in the image file and is relative to the
directory in which the compiler was invoked.

‘-p [SYMSPEC] '

‘—-—flat-profile[=SYMSPEC]'
The "-p' option causes 'gprof' to print a flat profile. If SYMSPEC is specified, print flat
profile only for matching symbols. *Note Flat Profile::.

*-P[SYMSPEC]'
‘—--no-flat-profile[=SYMSPEC]'

The “-P' option causes ‘gprof' to suppress printing a flat profile. If SYMSPEC is
specified, "gprof' prints a flat profile, but excludes matching symbols.

"-g[SYMSPEC]'
‘—--graph[=SYMSPEC]'

The *-q' option causes "gprof' to print the call graph analysis. If SYMSPEC is specified,
print call graph only for matching symbols and their children. *Note Call Graph::.

"-Q[SYMSPEC]'
"—-no-graph [=SYMSPEC] "'

The *-Q' option causes 'gprof' to suppress printing the call graph. If SYMSPEC is
specified, "gprof' prints a call graph, but excludes matching symbols.

_—
‘--separate-files'
This option affects annotated source output only. Normally, gprof prints annotated
source files to standard-output. If this option is specified, annotated source for a file

named ‘path/filename' is generated in the file *filename-ann'.

"—-Z[SYMSPEC]'
‘--no-exec-counts [=SYMSPEC]'

The "-Z' option causes "gprof' not to print a tally of functions and the number of times
each was called. If SYMSPEC is specified, print tally, but exclude matching symbols.

‘—-function-ordering'

The "--function-ordering' option causes ‘gprof' to print a suggested function ordering for
the program based on profiling data. This option suggests an ordering which may
improve paging, tlb and cache behavior for the program on systems which support
arbitrary ordering of functions in an executable.

The exact details of how to force the linker to place functions in a particular order is
system dependent and out of the scope of this manual.

"--file-ordering MAP FILE'
The "--file-ordering' option causes ‘gprof' to print a suggested .o link line ordering for
the program based on profiling data. This option suggests an ordering which may
improve paging, tlb and cache behavior for the program on systems which do not
support arbitrary ordering of functions in an executable.

Use of the "-a' argument is highly recommended with this option.

The MAP FILE argument is a pathname to a file which provides function name to
object file mappings. The format of the file is similar to the output of the program ‘nm'.

c-parse.o:00000000 T yyparse
c-parse.o0:00000004 C yyerrflag
c-1lang.0:00000000 T maybe objc method name
c-1ang.0:00000000 T print lang statistics
c-1lang.0:00000000 T recognize objc keyword
c-decl.o0:00000000 T print lang identifier
c-decl.o:00000000 T print lang type

GNU ‘'nm' "--extern-only' "--defined-only' *-v' *--print-file-name' can be used to create
MAP_FILE.

o
‘--traditional’

The *-T' option causes "gprof' to print its output in "traditional" BSD style.

"-w WIDTH'
—-width=WIDTH'

Sets width of output lines to WIDTH. Currently only used when printing the function
index at the bottom of the call graph.

e
"—--all-lines'
This option affects annotated source output only. By default, only the lines at the
beginning of a basic-block are annotated. If this option is specified, every line in a

basic-block is annotated by repeating the annotation for the first line. This behavior is

similar to ‘tcov''s "-a'.

‘——demangle'
"—--no-demangle'

These options control whether C++ symbol names should be demangled when printing
output. The default is to demangle symbols. The '--no-demangle' option may be used
to turn off demangling.

4.2 Analysis Options

\—fno—static'
The *-a' option causes ‘gprof to suppress the printing of statically declared (private)
functions. (These are functions whose names are not listed as global, and which are not
visible outside the file/function/block where they were defined.) Time spent in these
functions, calls to/from them, etc, will all be attributed to the function that was loaded
directly before it in the executable file. This option affects both the flat profile and the
call graph.

‘—Sstatic—call—graph'

The *-c' option causes the call graph of the program to be augmented by a heuristic which
examines the text space of the object file and identifies function calls in the binary machine
code. Since normal call graph records are only generated when functions are entered, this
option identifies children that could have been called, but never were. Calls to functions that
were not compiled with profiling enabled are also identified, but only if symbol table entries are
present for them. Calls to dynamic library routines are typically *not* found by this option.
Parents or children identified via this heuristic are indicated in the call graph with call counts of

0"

~_pr
‘—-ignore-non-functions'

The "-D' option causes "gprof' to ignore symbols which are not known to be functions.
This option will give more accurate profile data on systems where it is supported
(Solaris and HPUX for example).

"~k FROM/TO'
The *-k' option allows you to delete from the call graph any arcs from symbols matching
symspec FROM to those matching symspec TO.

\—Eline'
The *-I' option enables line-by-line profiling, which causes histogram hits to be charged
to individual source code lines, instead of functions. If the program was compiled with
basic-block counting enabled, this option will also identify how many times each line of
code was executed. While line-by-line profiling can help isolate where in a large
function a program is spending its time, it also significantly increases the running time
of "gprof', and magnifies statistical inaccuracies. *Note Sampling Error::.

“-m NUM'
"—-min-count=NUM"

This option affects execution count output only. Symbols that are executed less than
NUM times are suppressed.

"-n[SYMSPEC]'
“——time [=SYMSPEC]'

The *-n' option causes "gprof', in its call graph analysis, to only propagate times for
symbols matching SYMSPEC.

*-N[SYMSPEC]'
"——no-time [=SYMSPEC]'

The "-n' option causes "gprof', in its call graph analysis, not to propagate times for
symbols matching SYMSPEC.

o
"—-display-unused-functions'
If you give the *-z' option, ‘gprof will mention all functions in the flat profile, even
those that were never called, and that had no time spent in them. This is useful in

conjunction with the "-c' option for discovering which routines were never called.

4.3 Miscellaneous Options

T—-d[NUM]'
' —-debug [=NUM] '

The -d NUM' option specifies debugging options. If NUM is not specified, enable all
debugging. *Note Debugging::.

" -ONAME'
"--file-format=NAME'

Selects the format of the profile data files. Recognized formats are “auto' (the default),
“bsd', "magic', and “prof' (not yet supported).

\—fsum'

The *-s' option causes "gprof' to summarize the information in the profile data files it
read in, and write out a profile data file called 'gmon.sum', which contains all the
information from the profile data files that “gprof' read in. The file ‘gmon.sum' may be
one of the specified input files; the effect of this is to merge the data in the other input

files into "gmon.sum'.

Eventually you can run "gprof' again without -s' to analyze the cumulative data in the
file "gmon.sum'.

N
‘--version'

The *-v' flag causes "gprof' to print the current version number, and then exit.

4.4 Depricated Options

These options have been replaced with newer versions that use symspecs.

FUNCTION NAME'
The “-e FUNCTION' option tells ‘gprof' to not print information about the function
FUNCTION NAME (and its children...) in the call graph. The function will still be
listed as a child of any functions that call it, but its index number will be shown as "[not
printed]'. More than one '-¢' option may be given; only one FUNCTION NAME may
be indicated with each "-e' option.

FUNCTION_NAME'
The -E FUNCTION' option works like the "-e¢' option, but time spent in the function
(and children who were not called from anywhere else), will not be used to compute the
percentages-of-time for the call graph. More than one '-E' option may be given; only
one FUNCTION NAME may be indicated with each "-E' option.

FUNCTION_NAME'
The “-f FUNCTION' option causes "gprof' to limit the call graph to the function
FUNCTION NAME and its children (and their children...). More than one "-f' option
may be given; only one FUNCTION NAME may be indicated with each *-f' option.

FUNCTION NAME'
The *-F FUNCTION' option works like the *-f' option, but only timespent in the function
and its children (and their children...) will be used to determine total-time and
percentages-of-time for the call graph. More than one '-F' option may be given; only
one FUNCTION NAME may be indicated with each '-F' option. The "-F' option
overrides the *-E' option.

Note that only one function can be specified with each "-¢', *-E', *-f' or *-F' option. To

specify more than one function, use multiple options. For example, this command:

gprof -e boring -f foo -f bar myprogram > gprof.output

lists in the call graph all functions that were reached from either "foo' or “bar' and were not
reachable from ‘boring'.

4.5 Symspecs

Many of the output options allow functions to be included or excluded using "symspecs"

(symbol specifications), which observe the following syntax:

filename containing a dot
| funcname not containing a dot
| linenumber
| ([any filename] ":' (any funcname | linenumber))

-9.

Here are some sample symspecs:

main.c'
Selects everything in file "main.c"--the dot in the string tells gprof to interpret the string
as a filename, rather than as a function name. To select a file whose name does not
contain a dot, a trailing colon should be specified. For example, "odd:" is interpreted as
the file named "odd".

main'
Selects all functions named "main". Notice that there may be multiple instances of the
same function name because some of the definitions may be local (i.e., static). Unless a
function name is unique in a program, you must use the colon notation explained below
to specify a function from a specific source file. Sometimes, function names contain
dots. In such cases, it is necessary to add a leading colon to the name. For example,
":.mul" selects function ".mul".

‘main.c:main'’'
Selects function "main" in file "main.c".

‘main.c:134"
Selects line 134 in file "main.c".

5. Interpreting "gprof''s Output

‘gprof' can produce several different output styles, the most important of which are
described below. The simplest output styles (file information, execution count, and function
and file ordering) are not described here, but are documented with the respective options that
trigger them. *Note Output Options::.

5.1 The Flat Profile

The "flat profile" shows the total amount of time your program spent executing each
function. Unless the *-z' option is given, functions with no apparent time spent in them, and no
apparent calls to them, are not mentioned. Note that if a function was not compiled for
profiling, and didn't run long enough to show up on the program counter histogram, it will be
indistinguishable from a function that was never called.

This is part of a flat profile for a small program:

Flat profile:
Each sample counts as 0.01 seconds.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy

-10 -

16.67 0.05 0.01 7 1.43 1.43 write
16.67 0.06 0.01 mcount
0.00 0.06 0.00 236 0.00 0.00 tzset
0.00 0.06 0.00 192 0.00 0.00 tolower
0.00 0.06 0.00 47 0.00 0.00 strlen
0.00 0.06 0.00 45 0.00 0.00 strchr

0.00 0.06 0.00 1 0.00 50.00 main
0.00 0.06 0.00 1 0.00 0.00 memcpy
0.00 0.06 0.00 1 0.00 10.11 print
0.00 0.06 0.00 1 0.00 0.00 profil
0.00 0.06 0.00 1 0.00 50.00 report

The functions are sorted by first by decreasing run-time spent in them, then by decreasing
number of calls, then alphabetically by name. The functions ‘'mcount' and “profil' are part of
the profiling aparatus and appear in every flat profile; their time gives a measure of the amount
of overhead due to profiling.

Just before the column headers, a statement appears indicating how much time each sample
counted as. This "sampling period" estimates the margin of error in each of the time figures. A
time figure that is not much larger than this is not reliable. In this example, each sample
counted as 0.01 seconds, suggesting a 100 Hz sampling rate. The program's total execution time
was 0.06 seconds, as indicated by the “cumulative seconds' field. Since each sample counted
for 0.01 seconds, this means only six samples were taken during the run. Two of the samples
occured while the program was in the “open' function, as indicated by the “self seconds' field.
Each of the other four samples occurred one each in “offtime', ‘'memccpy’, ‘write', and ‘mcount'.
Since only six samples were taken, none of these values can be regarded as particularly reliable.
In another run, the ‘self seconds' field for ‘'mcount’ might well be '0.00' or "0.02'. *Note
Sampling Error::, for a complete discussion.

The remaining functions in the listing (those whose ‘self seconds' field is "0.00") didn't
appear in the histogram samples at all. However, the call graph indicated that they were called,
so therefore they are listed, sorted in decreasing order by the “calls' field. Clearly some time was
spent executing these functions, but the paucity of histogram samples prevents any
determination of how much time each took.

Here is what the fields in each line mean:

"% time'
This is the percentage of the total execution time your program spent in this function.

These should all add up to 100%.

‘cumulative seconds'
This is the cumulative total number of seconds the computer spent executing this
functions, plus the time spent in all the functions above this one in this table.

"self seconds'
This is the number of seconds accounted for by this function alone. The flat profile

-11 -

listing is sorted first by this number.

‘calls'
This is the total number of times the function was called. If the function was never
called, or the number of times it was called cannot be determined (probably because the
function was not compiled with profiling enabled), the "calls" field is blank.

"self ms/call’
This represents the average number of milliseconds spent in this function per call, if this
function is profiled. Otherwise, this field is blank for this function.

“total ms/call'
This represents the average number of milliseconds spent in this function and its
descendants per call, if this function is profiled. Otherwise, this field is blank for this
function. This is the only field in the flat profile that uses call graph analysis.

‘name'
This is the name of the function. The flat profile is sorted by this field alphabetically
after the "self seconds" and "calls" fields are sorted.

5.2 The Call Graph

The "call graph" shows how much time was spent in each function and its children. From
this information, you can find functions that, while they themselves may not have used much
time, called other functions that did use unusual amounts of time.

Here is a sample call from a small program. This call came from the same "gprof' run as
the flat profile example in the previous chapter.

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on _exit [28]
0.00 0.00 1/1 exit [59]
0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]
0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]

0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]
0.01 0.02 2444260 offtime <cycle 2> [7]
0.00 0.00 236+1 tzset <cycle 2> [26]

The lines full of dashes divide this table into "entries", one for each function. Each entry
has one or more lines.

In each entry, the primary line is the one that starts with an index number in square
brackets. The end of this line says which function the entry is for. The preceding lines in the
entry describe the callers of this function and the following lines describe its subroutines (also
called "children" when we speak of the call graph).

The entries are sorted by time spent in the function and its subroutines.

The internal profiling function ‘'mcount' (*note Flat Profile::.) is never mentioned in the
call graph.

5.2.1 The Primary Line

The "primary line" in a call graph entry is the line that describes the function which the
entry is about and gives the overall statistics for this function.

For reference, we repeat the primary line from the entry for function ‘“report' in our main
example, together with the heading line that shows the names of the fields:

o)

index % time self children called name

[3] 100.0 0.00 0.05 1 report [3]

Here is what the fields in the primary line mean:

“index'
Entries are numbered with consecutive integers. Each function therefore has an index
number, which appears at the beginning of its primary line.

Each cross-reference to a function, as a caller or subroutine of another, gives its index
number as well as its name. The index number guides you if you wish to look for the
entry for that function.

"% time'
This is the percentage of the total time that was spent in this function, including time
spent in subroutines called from this function.

The time spent in this function is counted again for the callers of this function.

-13 -

Therefore, adding up these percentages is meaningless.

‘self!
This is the total amount of time spent in this function. This should be identical to the
number printed in the “seconds' field for this function in the flat profile.

‘children'
This is the total amount of time spent in the subroutine calls made by this function. This
should be equal to the sum of all the “self' and “children' entries of the children listed
directly below this function.

“called!
This is the number of times the function was called.

If the function called itself recursively, there are two numbers, separated by a "+'. The
first number counts non-recursive calls, and the second counts recursive calls.

In the example above, the function ‘report' was called once from "main'.

“name'’

This is the name of the current function. The index number is repeated after it.

If the function is part of a cycle of recursion, the cycle number is printed between the
function's name and the index number (*note Cycles::.). For example, if function ‘gnurr'
is part of cycle number one, and has index number twelve, its primary line would be end
like this:

gnurr <cycle 1> [12]

5.2.2 Lines for a Function's Callers

A function's entry has a line for each function it was called by. These lines' fields
correspond to the fields of the primary line, but their meanings are different because of the
difference in context.

For reference, we repeat two lines from the entry for the function ‘report', the primary line
and one caller-line preceding it, together with the heading line that shows the names of the
fields:

index % time self children called name
0.00 0.05 1/1 main [2]
[3] 100.0 0.00 0.05 1 report [3]

Here are the meanings of the fields in the caller-line for ‘report' called from "main":

“self!

- 14 -

An estimate of the amount of time spent in “report' itself when it was called from "main'.

“children'

An estimate of the amount of time spent in subroutines of ‘report' when ‘report' was
called from "main'.

The sum of the “self' and “children' fields is an estimate of the amount of time spent
within calls to ‘report' from "main'.

“called!

Two numbers: the number of times "report' was called from "main', followed by the total
number of nonrecursive calls to “report' from all its callers.

‘name and index number'

The name of the caller of ‘report' to which this line applies, followed by the caller's
index number.

Not all functions have entries in the call graph; some options to "gprof' request the
omission of certain functions. When a caller has no entry of its own, it still has caller-
lines in the entries of the functions it calls.

If the caller is part of a recursion cycle, the cycle number is printed between the name
and the index number.

If the identity of the callers of a function cannot be determined, a dummy caller-line is
printed which has "<spontaneous>' as the "caller's name" and all other fields blank. This can
happen for signal handlers.

5.2.3 Lines for a Function's Subroutines

A function's entry has a line for each of its subroutines--in other words, a line for each
other function that it called. These lines' fields correspond to the fields of the primary line, but
their meanings are different because of the difference in context.

For reference, we repeat two lines from the entry for the function ‘'main', the primary line
and a line for a subroutine, together with the heading line that shows the names of the fields:

index % time self children called name
[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

Here are the meanings of the fields in the subroutine-line for ‘main' calling “report'":

“self!

An estimate of the amount of time spent directly within ‘report' when “report' was called
from "main’.

-15-

“children'
An estimate of the amount of time spent in subroutines of ‘report' when ‘report' was
called from "main'.

The sum of the “self' and “children' fields is an estimate of the total time spent in calls to
‘report' from "main'.

‘called!
Two numbers, the number of calls to “report' from "main' followed by the total number
of nonrecursive calls to ‘report'. This ratio is used to determine how much of ‘report"s
“self' and “children' time gets credited to ‘main'. *Note Assumptions::.

"name'’
The name of the subroutine of 'main' to which this line applies, followed by the
subroutine's index number.

If the caller is part of a recursion cycle, the cycle number is printed between the name
and the index number.

5.2.4 How Mutually Recursive Functions Are Described

The graph may be complicated by the presence of "cycles of recursion" in the call graph.
A cycle exists if a function calls another function that (directly or indirectly) calls (or appears to
call) the original function. For example: if "a' calls 'b', and 'b' calls "a', then "a' and 'b' form a
cycle.

Whenever there are call paths both ways between a pair of functions, they belong to the
same cycle. If "a' and "b' call each other and 'b' and “c' call each other, all three make one cycle.
Note that even if "b' only calls "a' if it was not called from "a', “gprof' cannot determine this, so
‘a' and "b' are still considered a cycle.

The cycles are numbered with consecutive integers. When a function belongs to a cycle,
each time the function name appears in the call graph it is followed by "<cycle NUMBER>".

The reason cycles matter is that they make the time values in the call graph paradoxical.
The "time spent in children" of "a' should include the time spent in its subroutine 'b' and in "b"s
subroutines--but one of 'b'"s subroutines is "a'! How much of "a"s time should be included in
the children of "a', when "a' is indirectly recursive?

The way “gprof' resolves this paradox is by creating a single entry for the cycle as a whole.
The primary line of this entry describes the total time spent directly in the functions of the
cycle. The "subroutines" of the cycle are the individual functions of the cycle, and all other
functions that were called directly by them. The "callers" of the cycle are the functions, outside
the cycle, that called functions in the cycle.

- 16 -

Here is an example portion of a call graph which shows a cycle containing functions ‘a' and
'b'. The cycle was entered by a call to "a' from ‘'main'; both ‘a' and 'b' called "c'.

index % time self children called name
1.77 0 1/1 main [2]
[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
1.02 0 3 b <cycle 1> [4]
0.75 0 2 a <cycle 1> [5]
3 a <cycle 1> [5]
[4] 52.85 1.02 0 0 b <cycle 1> [4]
2 a <cycle 1> [5]
0 0 3/6 c [6]
1.77 0 1/1 main [2]
2 b <cycle 1> [4]
[5] 38.86 0.75 0 1 a <cycle 1> [5]
3 b <cycle 1> [4]
0 0 3/6 c [6]

(The entire call graph for this program contains in addition an entry for ‘'main', which calls "a',
and an entry for "¢', with callers "a' and 'b'.)

index % time self children called name
<spontaneous>
[1] 100.00 0 1.93 0 start [1]
0.16 1.77 1/1 main [2]
0.16 1.77 1/1 start [1]
[2] 100.00 0.16 1.77 1 main [2]
1.77 0 1/1 a <cycle 1> [5]
1.77 0 1/1 main [2]
[3] 91.71 1.77 0 1+5 <cycle 1 as a whole> [3]
1.02 0 3 b <cycle 1> [4]
0.75 0 2 a <cycle 1> [5]
0 0 6/6 c [6]
3 a <cycle 1> [5]
[4] 52.85 1.02 0 0 b <cycle 1> [4]
2 a <cycle 1> [5]
0 0 3/6 c [6]
1.77 0 1/1 main [2]
2 b <cycle 1> [4]
[5] 38.86 0.75 0 1 a <cycle 1> [5]
3 b <cycle 1> [4]
0 0 3/6 c [6]
0 0 3/6 b <cycle 1> [4]
0 0 3/6 a <cycle 1> [5]
[6] 0.00 0 0 6 c [6]

-17 -

The “self' field of the cycle's primary line is the total time spent in all the functions of the
cycle. It equals the sum of the “self' fields for the individual functions in the cycle, found in the
entry in the subroutine lines for these functions.

The “children' fields of the cycle's primary line and subroutine lines count only subroutines
outside the cycle. Even though "a' calls 'b', the time spent in those calls to 'b' is not counted in
‘a"s “children' time. Thus, we do not encounter the problem of what to do when the time in
those calls to 'b' includes indirect recursive calls back to "a'.

The “children' field of a caller-line in the cycle's entry estimates the amount of time spent
in the whole cycle, and its other subroutines, on the times when that caller called a function
in the cycle.

The “calls' field in the primary line for the cycle has two numbers: first, the number of
times functions in the cycle were called by functions outside the cycle; second, the number of
times they were called by functions in the cycle (including times when a function in the cycle
calls itself). This is a generalization of the usual split into nonrecursive and recursive calls.

The “calls' field of a subroutine-line for a cycle member in the cycle's entry says how many
time that function was called from functions in the cycle. The total of all these is the second
number in the primary line's “calls' field.

In the individual entry for a function in a cycle, the other functions in the same cycle can
appear as subroutines and as callers. These lines show how many times each function in the
cycle called or was called from each other function in the cycle. The 'self' and “children' fields
in these lines are blank because of the difficulty of defining meanings for them when recursion
is going on.

5.3 Line-by-line Profiling

“gprof''s “-1' option causes the program to perform "line-by-line" profiling. In this mode,
histogram samples are assigned not to functions, but to individual lines of source code. The
program usually must be compiled with a *-g' option, in addition to *-pg', in order to generate
debugging symbols for tracking source code lines.

The flat profile is the most useful output table in line-by-line mode. The call graph isn't as
useful as normal, since the current version of "gprof' does not propagate call graph arcs from
source code lines to the enclosing function. The call graph does, however, show each line of
code that called each function, along with a count.

Here is a section of ‘gprof's output, without line-by-line profiling. Note that “ct init'
accounted for four histogram hits, and 13327 calls to "init_block'.

Flat profile:

- 18 -

Each sample counts as 0.01 seconds.

% cumulative self self total
time seconds seconds <calls wus/call wus/call name
30.77 0.13 0.04 6335 6.31 6.31 ct _init

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

index % time self children called name
0.00 0.00 1/13496 name_too_ long
0.00 0.00 40/13496 deflate
0.00 0.00 128/13496 deflate fast
0.00 0.00 13327/13496 ct init

[7] 0.0 0.00 0.00 13496 init _block

Now let's look at some of "gprof''s output from the same program run, this time with line-
by-line profiling enabled. Note that ‘ct init"s four histogram hits are broken down into four
lines of source code - one hit occured on each of lines 349, 351, 382 and 385. In the call graph,
note how “ct init"s 13327 calls to 'init block' are broken down into one call from line 396,
3071 calls from line 384, 3730 calls from line 385, and 6525 calls from 387.

Flat profile:

Each sample counts as 0.0l seconds.

% cumulative self

time seconds seconds calls name

7.69 0.10 0.01 ct init (trees.c:349)
7.69 0.11 0.01 ct init (trees.c:351)
7.69 0.12 0.01 ct init (trees.c:382)
7.69 0.13 0.01 ct init (trees.c:385)

Call graph (explanation follows)

granularity: each sample hit covers 4 byte(s) for 7.69% of 0.13 seconds

% time self children called name

0.00 0.00 1/13496 name too long (gzip.c:1440)
0.00 0.00 1/13496 deflate (deflate.c:763)
0.00 0.00 1/13496 ct init (trees.c:396)
0.00 0.00 2/13496 deflate (deflate.c:727)
0.00 0.00 4/13496 deflate (deflate.c:686)
0.00 0.00 5/13496 deflate (deflate.c:675)
0.00 0.00 12/13496 deflate (deflate.c:679)
0.00 0.00 16/13496 deflate (deflate.c:730)
0.00 0.00 128/13496 deflate fast (deflate.c:654)
0.00 0.00 3071/13496 ct init (trees.c:384)
0.00 0.00 3730/13496 ct init (trees.c:385)
0.00 0.00 6525/13496 ct init (trees.c:387)

[6] 0.0 0.00 0.00 13496 init block (trees.c:408)

-19-

5.4 The Annotated Source Listing

“gprof's “-A' option triggers an annotated source listing, which lists the program's source
code, each function labeled with the number of times it was called. You may also need to
specify the *-I' option, if "gprof' can't find the source code files.

Compiling with “gcc ... -g -pg -a' augments your program with basic-block counting code,
in addition to function counting code. This enables "gprof' to determine how many times each
line of code was exeucted. For example, consider the following function, taken from gzip, with
line numbers added:

1 ulg updcrc (s, n)
2 uch *s;
3 unsigned n;
4 {
5 register ulg c;
6
7 static ulg crc = (ulg)Oxffffffffl;
8
9 if (s == NULL) {
10 c = OxffffffffL;
11 } else {
12 c = crc;
13 if (n) do {
14 c = crc 32 tab[...];
15 } while (--n);
16 }
17 crc = c;
18 return ¢ ©~ OxfffffffflL;
19 }

‘updcrc' has at least five basic-blocks. One is the function itself. The "if' statement on line
9 generates two more basic-blocks, one for each branch of the "if'. A fourth basic-block results
from the “if' on line 13, and the contents of the "do' loop form the fifth basic-block. The
compiler may also generate additional basic-blocks to handle various special cases.

A program augmented for basic-block counting can be analyzed with “gprof -1 -A'. I also
suggest use of the *-x' option, which ensures that each line of code is labeled at least once. Here
is 'updcrc's annotated source listing for a sample "gzip' run:

ulg updcrc (s, n)
uch *s;
unsigned n;

2 ->{
register ulg c;
static ulg crc = (ulg)Oxffffffffl;
2 > if (s == NULL) {
1 > c = OxffffffffL;
1 -> } else {
1 > c = crc;
1 —> if (n) do {

-20 -

26312 -> c = crc 32 tab[...];

26312,1,26311 -> } while (--n);
}
2 -> crc = c;
2 -> return ¢ ~ OxfffffffflL;
2 —>}

In this example, the function was called twice, passing once through each branch of the "if
statement. The body of the "do' loop was executed a total of 26312 times. Note how the "while'
statement is annotated. It began execution 26312 times, once for each iteration through the
loop. One of those times (the last time) it exited, while it branched back to the beginning of the
loop 26311 times.

6. Inaccuracy of "gprof' Output

6.1 Statistical Sampling Error

The run-time figures that "gprof' gives you are based on a sampling process, so they are
subject to statistical inaccuracy. If a function runs only a small amount of time, so that on the
average the sampling process ought to catch that function in the act only once, there is a pretty
good chance it will actually find that function zero times, or twice.

By contrast, the number-of-calls and basic-block figures are derived by counting, not
sampling. They are completely accurate and will not vary from run to run if your program is
deterministic.

The "sampling period" that is printed at the beginning of the flat profile says how often
samples are taken. The rule of thumb is that a run-time figure is accurate if it is considerably
bigger than the sampling period.

The actual amount of error can be predicted. For N samples, the *expected* error is the
square-root of N. For example, if the sampling period is 0.01 seconds and "foo"s run-time is 1
second, N is 100 samples (1 second/0.01 seconds), sqrt(N) is 10 samples, so the expected error
in “foo"s run-time is 0.1 seconds (10*0.01 seconds), or ten percent of the observed value.
Again, if the sampling period is 0.01 seconds and “bar"s run-time is 100 seconds, N is 10000
samples, sqrt(N) is 100 samples, so the expected error in “bar"s run-time is 1 second, or one
percent of the observed value. It is likely to vary this much *on the average* from one
profiling run to the next. (*Sometimes* it will vary more.)

This does not mean that a small run-time figure is devoid of information. If the program's
total run-time is large, a small run-time for one function does tell you that that function used
an insignificant fraction of the whole program's time. Usually this means it is not worth
optimizing.

One way to get more accuracy is to give your program more (but similar) input data so it
will take longer. Another way is to combine the data from several runs, using the "-s' option of

=21 -

‘gprof'. Here is how:

1. Run your program once.

2. Issue the command “'mv gmon.out gmon.sum'.

3. Run your program again, the same as before.

4. Merge the new data in "gmon.out' into “gmon.sum' with this command:

gprof -s EXECUTABLE-FILE gmon.out gmon.sum

5. Repeat the last two steps as often as you wish.
6. Analyze the cumulative data using this command:

gprof EXECUTABLE-FILE gmon.sum > OUTPUT-FILE

6.2 Estimating ‘children' Times

Some of the figures in the call graph are estimates--for example, the "children' time values
and all the the time figures in caller and subroutine lines.

There is no direct information about these measurements in the profile data itself. Instead,
“gprof' estimates them by making an assumption about your program that might or might not be
true.

The assumption made is that the average time spent in each call to any function "foo' is not
correlated with who called ‘foo'. If foo' used 5 seconds in all, and 2/5 of the calls to ‘foo' came
from "a', then "foo' contributes 2 seconds to "a"s “children' time, by assumption.

This assumption is usually true enough, but for some programs it is far from true. Suppose
that “foo' returns very quickly when its argument is zero; suppose that ‘a' always passes zero as
an argument, while other callers of "foo' pass other arguments. In this program, all the time
spent in “foo' is in the calls from callers other than "a'. But "gprof' has no way of knowing this;
it will blindly and incorrectly charge 2 seconds of time in "foo' to the children of "a'.

We hope some day to put more complete data into “gmon.out', so that this assumption is no

longer needed, if we can figure out how. For the nonce, the estimated figures are usually more
useful than misleading.

7. Answers to Common Questions
1) How do I find which lines in my program were executed the most times?

Compile your program with basic-block counting enabled, run it, then use the following
pipeline:

gprof -1 -C OBJFILE | sort -k 3 -n -r

22

This listing will show you the lines in your code executed most often, but not necessarily
those that consumed the most time.

2) How do I find which lines in my program called a particular function?

Use “gprof -1' and lookup the function in the call graph. The callers will be broken down by
function and line number.

3) How do I analyze a program that runs for less than a second?
Try using a shell script like this one:

for i in “seq 1 100°; do
fastprog
mv gmon.out gmon.out.$i
done

gprof -s fastprog gmon.out.*
gprof fastprog gmon.sum

If your program is completely deterministic, all the call counts will be simple multiples of
100 (i.e. a function called once in each run will appear with a call count of 100).

8. Incompatibilities with Unix "gprof’

GNU “gprof' and Berkeley Unix “gprof' use the same data file "gmon.out', and provide
essentially the same information. But there are a few differences.

* GNU “gprof' uses a new, generalized file format with support for basic-block execution
counts and non-realtime histograms. A magic cookie and version number allows “gprof’
to easily identify new style files. Old BSD-style files can still be read. *Note File
Format::.

* For a recursive function, Unix "gprof' lists the function as a parent and as a child, with a
“calls' field that lists the number of recursive calls. GNU ‘gprof' omits these lines and

puts the number of recursive calls in the primary line.

* When a function is suppressed from the call graph with "-e', GNU “gprof still lists it as a
subroutine of functions that call it.

* GNU “gprof' accepts the *-k' with its argument in the form “from/to', instead of "from to'.

* In the annotated source listing, if there are multiple basic blocks on the same line, GNU
“gprof prints all of their counts, separated by commas.

-23 .

* The blurbs, field widths, and output formats are different. GNU “gprof' prints blurbs after
the tables, so that you can see the tables without skipping the blurbs.

9. Details of Profiling

9.1 Implementation of Profiling

Profiling works by changing how every function in your program is compiled so that when
it is called, it will stash away some information about where it was called from. From this, the
profiler can figure out what function called it, and can count how many times it was called. This
change is made by the compiler when your program is compiled with the *-pg' option, which
causes every function to call ‘mcount' (or °_mcount', or ° mcount', depending on the OS and
compiler) as one of its first operations.

The ‘'mcount' routine, included in the profiling library, is responsible for recording in an in-
memory call graph table both its parent routine (the child) and its parent's parent. This is
typically done by examining the stack frame to find both the address of the child, and the return
address in the original parent. Since this is a very machine-dependant operation, ‘'mcount' itself
is typically a short assembly-language stub routine that extracts the required information, and
then calls © mcount internal' (a normal C function) with two arguments - “frompc' and
‘selfpc’. * mcount internal' is responsible for maintaining the in-memory call graph, which
records “frompc', ‘selfpc', and the number of times each of these call arcs was transversed.

GCC Version 2 provides a magical function (" builtin_return_address'), which allows a
generic ‘mcount' function to extract the required information from the stack frame. However,
on some architectures, most notably the SPARC, using this builtin can be very computationally
expensive, and an assembly language version of "'mcount' is used for performance reasons.

Number-of-calls information for library routines is collected by using a special version of
the C library. The programs in it are the same as in the usual C library, but they were compiled
with *-pg'. If you link your program with “gcc ... -pg', it automatically uses the profiling version
of the library.

Profiling also involves watching your program as it runs, and keeping a histogram of where
the program counter happens to be every now and then. Typically the program counter is
looked at around 100 times per second of run time, but the exact frequency may vary from
system to system.

This is done is one of two ways. Most UNIX-like operating systems provide a “profil()’
system call, which registers a memory array with the kernel, along with a scale factor that
determines how the program's address space maps into the array. Typical scaling values cause
every 2 to 8 bytes of address space to map into a single array slot. On every tick of the system
clock (assuming the profiled program is running), the value of the program counter is examined

-4 -

and the corresponding slot in the memory array is incremented. Since this is done in the kernel,
which had to interrupt the process anyway to handle the clock interrupt, very little additional
system overhead is required.

However, some operating systems, most notably Linux 2.0 (and earlier), do not provide a
‘profil()' system call. On such a system, arrangements are made for the kernel to periodically
deliver a signal to the process (typically via ‘setitimer()'), which then performs the same
operation of examining the program counter and incrementing a slot in the memory array.
Since this method requires a signal to be delivered to user space every time a sample is taken, it
uses considerably more overhead than kernel-based profiling. Also, due to the added delay
required to deliver the signal, this method is less accurate as well.

A special startup routine allocates memory for the histogram and either calls “profil()' or
sets up a clock signal handler. This routine ('monstartup') can be invoked in several ways. On
Linux systems, a special profiling startup file “gcrt0.0', which invokes 'monstartup' before
‘main’, is used instead of the default “crt0.0'. Use of this special startup file is one of the effects
of using “gcc ... -pg' to link. On SPARC systems, no special startup files are used. Rather, the
‘mcount' routine, when it is invoked for the first time (typically when "main' is called), calls
‘monstartup'.

If the compiler's "-a' option was used, basic-block counting is also enabled. Each object
file is then compiled with a static array of counts, initially zero. In the executable code, every
time a new basic-block begins (i.e. when an 'if' statement appears), an extra instruction is
inserted to increment the corresponding count in the array. At compile time, a paired array was
constructed that recorded the starting address of each basic-block. Taken together, the two
arrays record the starting address of every basic-block, along with the number of times it was
executed.

The profiling library also includes a function (‘mcleanup') which is typically registered
using “atexit()' to be called as the program exits, and is responsible for writing the file
‘gmon.out’. Profiling is turned off, various headers are output, and the histogram is written,
followed by the call-graph arcs and the basic-block counts.

The output from “gprof' gives no indication of parts of your program that are limited by I/O
or swapping bandwidth. This is because samples of the program counter are taken at fixed
intervals of the program's run time. Therefore, the time measurements in ‘gprof output say
nothing about time that your program was not running. For example, a part of the program that
creates so much data that it cannot all fit in physical memory at once may run very slowly due
to thrashing, but “gprof' will say it uses little time. On the other hand, sampling by run time has
the advantage that the amount of load due to other users won't directly affect the output you get.

9.2 Profiling Data File Format

The old BSD-derived file format used for profile data does not contain a magic cookie that

_25.-

allows to check whether a data file really is a gprof file. Furthermore, it does not provide a
version number, thus rendering changes to the file format almost impossible. GNU "gprof' uses
a new file format that provides these features. For backward compatibility, GNU gprof
continues to support the old BSD-derived format, but not all features are supported with it. For
example, basic-block execution counts cannot be accommodated by the old file format.

The new file format is defined in header file "gmon out.h'. It consists of a header
containing the magic cookie and a version number, as well as some spare bytes available for
future extensions. All data in a profile data file is in the native format of the host on which the
profile was collected. GNU “gprof' adapts automatically to the byte-order in use.

In the new file format, the header is followed by a sequence of records. Currently, there are
three different record types: histogram records, call-graph arc records, and basic-block
execution count records. Each file can contain any number of each record type. When reading a
file, GNU “gprof' will ensure records of the same type are compatible with each other and
compute the union of all records. For example, for basic-block execution counts, the union is
simply the sum of all execution counts for each basic-block.

9.2.1 Histogram Records

Histogram records consist of a header that is followed by an array of bins. The header
contains the text-segment range that the histogram spans, the size of the histogram in bytes
(unlike in the old BSD format, this does not include the size of the header), the rate of the
profiling clock, and the physical dimension that the bin counts represent after being scaled by
the profiling clock rate. The physical dimension is specified in two parts: a long name of up to
15 characters and a single character abbreviation. For example, a histogram representing real-
time would specify the long name as "seconds" and the abbreviation as "s". This feature is
useful for architectures that support performance monitor hardware (which, fortunately, is
becoming increasingly common). For example, under DEC OSF/1, the "uprofile" command
can be used to produce a histogram of, say, instruction cache misses. In this case, the dimension
in the histogram header could be set to "i-cache misses" and the abbreviation could be set to "1"
(because it is simply a count, not a physical dimension). Also, the profiling rate would have to
be set to 1 in this case.

Histogram bins are 16-bit numbers and each bin represent an equal amount of text-space.
For example, if the text-segment is one thousand bytes long and if there are ten bins in the
histogram, each bin represents one hundred bytes.

9.2.2 Call-Graph Records

Call-graph records have a format that is identical to the one used in the BSD-derived file
format. It consists of an arc in the call graph and a count indicating the number of times the arc
was traversed during program execution. Arcs are specified by a pair of addresses: the first
must be within caller's function and the second must be within the callee's function. When
performing profiling at the function level, these addresses can point anywhere within the

-26 -

respective function. However, when profiling at the line-level, it is better if the addresses are as
close to the call-site/entry-point as possible. This will ensure that the line-level call-graph is
able to identify exactly which line of source code performed calls to a function.

9.2.3 Basic-Block Execution Count Records

Basic-block execution count records consist of a header followed by a sequence of
address/count pairs. The header simply specifies the length of the sequence. In an
address/count pair, the address identifies a basic-block and the count specifies the number of
times that basic-block was executed. Any address within the basic-address can be used.

9.3 “eprof's Internal Operation

Like most programs, "gprof' begins by processing its options. During this stage, it may
building its symspec list (‘sym ids.c:sym id add'), if options are specified which use
symspecs. "gprof' maintains a single linked list of symspecs, which will eventually get turned
into 12 symbol tables, organized into six include/exclude pairs - one pair each for the flat
profile (INCL_FLAT/EXCL FLAT), the call graph arcs (INCL _ARCS/EXCL_ARCS),
printing in the call graph (INCL _GRAPH/EXCL_GRAPH), timing propagation in the call
graph (INCL_TIME/EXCL_TIME), the annotated source listing
(INCL_ANNO/EXCL_ANNO), and the execution count listing (INCL EXEC/EXCL_EXEC).

After option processing, ‘gprof finishes building the symspec list by adding all the
symspecs in "default excluded list' to the exclude lists EXCL TIME and EXCL_GRAPH, and
if line-by-line profiling is specified, EXCL FLAT as well. These default excludes are not
added to EXCL ANNO, EXCL ARCS, and EXCL EXEC.

Next, the BFD library is called to open the object file, verify that it is an object file, and
read its symbol table (‘core.c:core init'), using ‘bfd canonicalize symtab' after mallocing an
appropiate sized array of asymbols. At this point, function mappings are read (if the *--file-
ordering' option has been specified), and the core text space is read into memory (if the *-c'
option was given).

“gprof''s own symbol table, an array of Sym structures, is now built. This is done in one of
two ways, by one of two routines, depending on whether line-by-line profiling (*-I' option) has
been enabled. For normal profiling, the BFD canonical symbol table is scanned. For line-by-
line profiling, every text space address is examined, and a new symbol table entry gets created
every time the line number changes. In either case, two passes are made through the symbol
table - one to count the size of the symbol table required, and the other to actually read the
symbols. In between the two passes, a single array of type "Sym' is created of the appropiate
length. Finally, ‘symtab.c:symtab_finalize' is called to sort the symbol table and remove
duplicate entries (entries with the same memory address).

The symbol table must be a contiguous array for two reasons. First, the "gsort' library

_27 -

function (which sorts an array) will be used to sort the symbol table. Also, the symbol lookup
routine ("symtab.c:sym_lookup'), which finds symbols based on memory address, uses a binary
search algorithm which requires the symbol table to be a sorted array. Function symbols are
indicated with an ‘is_func' flag. Line number symbols have no special flags set. Additionally, a
symbol can have an “is_static' flag to indicate that it is a local symbol.

With the symbol table read, the symspecs can now be translated into Syms
(‘sym _ids.c:sym_id parse'). Remember that a single symspec can match multiple symbols. An
array of symbol tables (‘syms') is created, each entry of which is a symbol table of Syms to be
included or excluded from a particular listing. The master symbol table and the symspecs are
examined by nested loops, and every symbol that matches a symspec is inserted into the
appropriate syms table. This is done twice, once to count the size of each required symbol
table, and again to build the tables, which have been malloced between passes. From now on,
to determine whether a symbol is on an include or exclude symspec list, “gprof' simply uses its
standard symbol lookup routine on the appropriate table in the ‘syms' array.

Now the profile data file(s) themselves are read (‘gmon io.c:gmon out read'), first by
checking for a new-style "gmon.out' header, then assuming this is an old-style BSD "gmon.out'
if the magic number test failed.

New-style histogram records are read by “hist.c:hist read rec'. For the first histogram
record, allocate a memory array to hold all the bins, and read them in. When multiple profile
data files (or files with multiple histogram records) are read, the starting address, ending
address, number of bins and sampling rate must match between the various histograms, or a
fatal error will result. If everything matches, just sum the additional histograms into the existing
in-memory array.

As each call graph record is read (‘call graph.c:cg read rec'), the parent and child
addresses are matched to symbol table entries, and a call graph arc is created by
‘cg arcs.c:arc_add', unless the arc fails a symspec check against INCL ARCS/EXCL_ARCS.
As each arc is added, a linked list is maintained of the parent's child arcs, and of the child's
parent arcs. Both the child's call count and the arc's call count are incremented by the record's
call count.

Basic-block records are read (‘basic blocks.c:bb read rec'), but only if line-by-line
profiling has been selected. Each basic-block address is matched to a corresponding line
symbol in the symbol table, and an entry made in the symbol's bb_addr and bb calls arrays.
Again, if multiple basic-block records are present for the same address, the call counts are
cumulative.

A gmon.sum file is dumped, if requested (‘gmon_io.c:gmon_out write').

If histograms were present in the data files, assign them to symbols
(Chist.c:hist_assign samples') by iterating over all the sample bins and assigning them to

-28 -

symbols. Since the symbol table is sorted in order of ascending memory addresses, we can
simple follow along in the symbol table as we make our pass over the sample bins. This step
includes a symspec check against INCL FLAT/EXCL FLAT. Depending on the histogram
scale factor, a sample bin may span multiple symbols, in which case a fraction of the sample
count is allocated to each symbol, proportional to the degree of overlap. This effect is rare for
normal profiling, but overlaps are more common during line-by-line profiling, and can cause
each of two adjacent lines to be credited with half a hit, for example.

If call graph data is present, "cg arcs.c:cg assemble' is called. First, if “-c' was specified, a
machine-dependant routine (*find_call') scans through each symbol's machine code, looking for
subroutine call instructions, and adding them to the call graph with a zero call count. A
topological sort is performed by depth-first numbering all the symbols (‘cg_dfn.c:cg _dfn'), so
that children are always numbered less than their parents, then making a array of pointers into
the symbol table and sorting it into numerical order, which is reverse topological order
(children appear before parents). Cycles are also detected at this point, all members of which
are assigned the same topological number. Two passes are now made through this sorted array
of symbol pointers. The first pass, from end to beginning (parents to children), computes the
fraction of child time to propogate to each parent and a print flag. The print flag reflects
symspec handling of INCL GRAPH/EXCL GRAPH, with a parent's include or exclude (print
or no print) property being propagated to its children, unless they themselves explicitly appear
in INCL GRAPH or EXCL GRAPH. A second pass, from beginning to end (children to
parents) actually propogates the timings along the call graph, subject to a check against
INCL TIME/EXCL TIME. With the print flag, fractions, and timings now stored in the
symbol structures, the topological sort array is now discarded, and a new array of pointers is
assembled, this time sorted by propagated time.

Finally, print the various outputs the user requested, which is now fairly straightforward.
The call graph (‘cg_print.c:cg print') and flat profile (‘hist.c:hist print') are regurgitations of
values already computed. The annotated source listing (“basic blocks.c:
print_annotated source') uses basic-block information, if present, to label each line of code with
call counts, otherwise only the function call counts are presented.

The function ordering code is marginally well documented in the source code itself
(‘cg print.c'). Basically, the functions with the most use and the most parents are placed first,
followed by other functions with the most use, followed by lower use functions, followed by
unused functions at the end.

9.3.1 Debugging “gprof’

If "gprof was compiled with debugging enabled, the *-d' option triggers debugging output
(to stdout) which can be helpful in understanding its operation. The debugging number
specified is interpreted as a sum of the following options:

2 - Topological sort
Monitor depth-first numbering of symbols during call graph analysis

-29.

4 - Cycles
Shows symbols as they are identified as cycle heads

16 - Tallying
As the call graph arcs are read, show each arc and how the total calls
to each function are tallied

32 - Call graph arc sorting
Details sorting individual parents/children within each call graph entry

64 - Reading histogram and call graph records
Shows address ranges of histograms as they are read, and each call graph arc

128 - Symbol table
Reading, classifying, and sorting the symbol table from the object file. For line-by-line
profiling (*-I' option), also shows line numbers being assigned to memory addresses.

256 - Static call graph
Trace operation of "-c' option

512 - Symbol table and arc table lookups
Detail operation of lookup routines

1024 - Call graph propagation
Shows how function times are propagated along the call graph

2048 - Basic-blocks
Shows basic-block records as they are read from profile data (only
meaningful with *-1' option)

4096 - Symspecs
Shows symspec-to-symbol pattern matching operation

8192 - Annotate source
Tracks operation of *-A' option

-30 -

