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CHAPTER 10 

                    Modelling Crop Improvement in a 
G     �     E � M Framework via Gene – Trait –
 Phenotype Relationships 

    1.    INTRODUCTION 

   Crop performance is determined by the combined effects of the genotype of the crop and the environmen-
tal conditions of the production system. Improving crop performance to satisfy an increasing demand for 
plant products is a constant challenge to plant scientists. Plant breeders approach this challenge by search-
ing the genetic space for superior genotypes that have improved performance across the environments of 
the production system ( Figure 1   ), while agronomists pursue the same goal by optimising management 
for the cohort of elite genotypes developed by plant breeding. Historically, plant breeding and agronomy 
have co-evolved, and both have contributed to improved crop performance. This iterative process has been 
extremely successful in creating superior crops as demonstrated by the steady increase in maize yields in the 
USA ( Duvick et al., 2004 ; Duvick and Cassman, 1999 ; Castleberry et al., 1984 ), and the consistent but dis-
continuous progress in wheat yield in Australia (Chapter 2). Crop physiology and modelling, although use-
ful to interpret and describe the physiological process underpinning such yield improvements (i.e.  Gifford
et al., 1984 ; Duncan et al., 1978 ; Duvick et al., 2004 ; Slafer, 1994 ; Otegui and Slafer, 2000 ), have provided 
little guidance for how to apply these concepts to improve the effi ciency of the breeding process ( Campos
et al., 2004 ; Evans, 1976 ; Sinclair et al., 2004 ; Lee, 1995 ).

   The current paradigm of creating improved crops by breeding new genotypes and then optimising their 
management at a later stage of the crop improvement process constrains breeders and agronomists to 
exploring a reduced set of the vast space defi ned by the full set of possible genotype (G) and management 
(M) combinations. In addition, variable environmental (E) conditions interacting with G and M (G     �     E �M)
complicates the defi nition of the possible paths towards realised genetic gain in production environments 
and limits our ability to make inferences on the effects of alternative management practices. The size and 
complexity of the G     �     E �M system, and the diffi culty of dealing with many interactions simultaneously, has 
traditionally being tackled by crop scientists through a discipline-centred approach that deals with com-
ponents of the G     �     E �M interactions separately, most frequently as G     �     E by plant breeders and M     �     E by 
agronomists ( Cooper and Hammer, 1996 ; Boote et al., 1996 ; Loomis and Connor, 1992 ). An open ques-
tion is whether enhanced rates of crop improvement can be realised by a more integrated approach. The 
quantifi cation of these interactions relies on the use of statistical methods (i.e.  Cooper and Hammer, 1996 ),
yet interpretation of these G     �     E �M interactions could be improved by means of crop modelling and simu-
lation applied to understand their causes and their relevance to the target production system ( Cooper and 
Hammer, 1996 ; Löffl er et al., 2005 ).
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   The vast size and complexity of the G     �     E �M space that confronts breeders and agronomists present many 
challenges to the defi nition of practical approaches for developing improved crops and management prac-
tices as integrated and coordinated products since most of this space remains unobserved. The exhaustive 
empirical exploration of this space is not feasible. This led to the proposition that development of superior 
cultivars is limited by the ability to simultaneously identify favourable combinations of genomic regions 
and sustainable management systems that optimise resource capture in cropping systems operating in a tar-
get population  of environment (TPE), given the resources available to plant breeders and agronomists to 
search among possible G     �     M combinations ( Cooper and Hammer, 1996 ; Hammer and Jordan, 2007 ). In 
a context of rapid technological innovation in agronomy (Chapters 2 and 3), environmental change ( Karl 
and Trenberth, 2003 ; Chapter 20) and increasing costs per unit yield gain ( Duvick and Cassman, 1999 ), it is 
opportune to contemplate the following questions: 

       ■   Can we explore the G     �     E � M space more effectively? 

       ■   Can we leverage advances in knowledge of G     �     E � M interactions, and associated physiological con-
cepts, to tackle this complexity in an integrated approach to develop improved crops?    

   It can be anticipated that positive answers to these two questions would lead to crop improvement methods 
that enable breeders and agronomists to project trajectories in the G     �     E �M space into the future and gain 
insights into the consequences of manipulating genomes to create improved crops for targeted management 
and environments. Central to these methods are the quantifi cation of gene-to-phenotype (GP) relationships 
for key traits in the reference population of a breeding program and the capacity of the framework to iden-
tify genetic hypotheses that could be tested and utilised in the breeding program. 

   Signifi cant efforts have been made to tackle the GP problem by seeking approaches that link information 
at the level of gene or genomic region to the expressed phenotype in a manner that is useful for selection 
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FIGURE 1 
       Maize yield improvement for a set of Pioneer hybrids released between 1920 and 2007 grown in the target population of 
environments ( y       �      1.43 x       �      78.95;  r  2       �      0.96), full irrigation ( y       �      1.51 x       �      129.4;  r  2       �      0.88) and drought stress imposed at 
fl owering ( y       �      1.39 x       �      28.6;  r  2       �      0.90), or grain fi lling ( y       �      0.99 x       �      86;  r  2       �      0.90). Linear regressions estimate using 1930 as 
base year. Conversion factor between bu/a and Mg/ha is 0.06271.    
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(      Cooper et al., 2002, 2005 ; Hammer et al., 2006 ; Tardieu, 2003 ). An emergent synthesis of the promising 
approaches to the GP problem involves advancing mathematical models of crop growth and development 
to link genetic variation in adaptive traits to physiological determinants, developing advanced statistical 
methods that help relate genomic regions to parameters in the model control equations ( van Eeuwijk et al., 
2005 ) and modelling of the G     �     E �M systems as an extension of Kauffman’s  NK model ( Box 1   ). The inte-
gration of these tools and their application in breeding has proven to be non-trivial. There is still debate 
about the level of details needed for crop growth models to be able to integrate processes across levels of 
organisation while predicting emergent functional consequences for the organism that arise from the inter-
play among gene networks, cell metabolism, plant organs, individuals in the crop and the environment 
(Hammer et al., 2006 ).

   The aim of this chapter is to introduce fundamental concepts of modelling natural systems using a G     �     E � M 
framework and discuss prospects for an integrated approach for improving crop performance that tackles 
the G     �     E �M interactions holistically. First, we outline general principles of modelling biophysical systems, 
including a description of fundamental components of crop models. Second, we describe G     �     E �M sys-
tems and introduce GP models, the  E(NK) framework and concepts of adaptation landscapes as applied to 
plant breeding. Finally, we demonstrate and discuss the application of the framework by studying genetic 
improvement of maize in the US Corn Belt. 

    2.    MODELLING BIOPHYSICAL SYSTEMS 

   Crop models are implementations of theoretical frameworks in the form of a series of quantitative expres-
sions. As such, crop models formalise and integrate concepts from disciplines such as physiology, microme-
teorology, soil science and biophysics into an interrelated system of mathematical equations that describes 
the dynamic growth and development of a crop ( de Wit, 1982 ; Thornley and Johnson, 2000 ). Crop models 
represent a simplifi ed view of all or part of the natural system. The motivation for seeking a simplifi ed quan-
titative representation of the target system is to help scientists approach complex problems by focusing on 
the important components and achieve their research objectives. The structure and complexity of a crop 
model (e.g. time step for integration) thus depends on the research or technology objective. In this con-
text, crop modelling should be viewed as an iterative process in which model predictions become testable 
hypotheses, and the results of testing these hypotheses generate feedback to the model-building process 

 The  E ( NK ) model, and an informal extension to accommo-
date M, provides a framework to consider adaptation and 
fi tness landscape. In this model  N  represent the number 
of genes involved in determining the performance of the 
genotype,  K  the average level of epistasis (interactions 
between a gene and any of the other  N      �      1  genes for a 
given E  ) and  E  the number of environment types in the 
TPE ( Cooper and Podlich, 2002 ). The parenthesis notation 
indicates that the number of genes and the level of epis-
tasis can change with E, and by extension with M. The 
simplest form of the model assumes one environment 
and management to generate a fi xed structure or poten-
tial surface, on which peaks are positions sought through 

breeding. The two-allele diploid  NK       �       N:0 family of mod-
els, which corresponds to the additive fi nite locus genetic 
model used in quantitative genetics, has a landscape 
characterised by a single peak and a smooth surface, that 
is, the trait performance of genetically similar individu-
als are highly correlated. Landscapes become more rug-
ged as K  (level of epistasis) increases. In the limit where 
K       �       N      �      1  ( N:N      �      1  family of models), the landscape is 
fully random ( Kauffman, 1993 ). For a given family of  NK
models, changes in environment types and their frequen-
cies induce deformations to the adaptation landscapes; 
the magnitude of the deformation depends on the under-
lying trait physiology ( Cooper and Podlich, 2002 ).   

   BOX 1       The E(NK) Model      

2. Modelling Biophysical Systems
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to improve the representation of the biological and physical processes and the model structure whenever 
necessary. Simulation, which involves exercising the model in order to study system dynamics and prop-
erties, is a critical activity in this iterative model-building approach, as it provides a method to study the 
natural system through the properties captured in the quantitative model. With an acceptable model, such 
research can help understand emergent behaviour of the system and conceive new concepts that translate 
into new knowledge, sometimes expressed in the form of new equations and algorithms. The result of the 
systems modelling and simulation process is the assimilation of knowledge into an integrated theoretical 
framework from which quantitative predictions and testable hypotheses are proposed for experimental 
investigation ( Hammer and Jordan, 2007 ; Thornley and Johnson, 2000 ).

   The crop models in use today integrate physiological knowledge developed through more than 30 years 
of empirical research ( Sinclair and Seligman, 1996 ). Since the fi rst developments by de Wit in the 1960s 
(van Ittersum et al., 2003 ), many crop models have been built with different scope and objectives in mind. 
A recent symposium on Farming Systems Design listed more than 70 models ( http://www.iemss.org/
farmsys07/index.php ). The review of all these models and their component processes is beyond the scope of 
this chapter. A description of the most common modelling platforms used in agricultural sciences and their 
‘pedigree’ can be found elsewhere ( Jones et al., 2003 ; Keating et al., 2003 ; van Ittersum et al., 2003 ; Stöckle 
et al., 2003 ). Reference publications provide detailed treatments and models for simulating energy balance and 
transpiration ( Jones, 1992 ; Nobel, 2005 ), photosynthesis ( Nobel, 2005 ; Boote and Loomis, 1991 ), different 
aspects of soil water and nutrient balance ( Hanks and Ritchie, 1991 ; Ritchie, 1998 ; Loomis and Connor, 1992 )
and soil carbon dynamics (       Parton et al., 1988, 1994 ). Chapter 20 (Section 4) outlines modelling approaches 
with emphasis on grain yield and climate change. With a narrower, more specifi c focus, other chapters dis-
cuss modelling approaches for capture and effi ciency in the use of radiation (Chapter 7) and aspects of grain 
quality (Chapter 16). Here we outline common modelling approaches and fundamental components of crop 
models with emphasis on genetic, environmental, management and G     �     E�M drivers of grain yield. 

   Crop models of interest in crop physiology, and in particular those suitable to modelling G     �     E �M inter-
actions, are continuous, dynamic (include a time dimension) and foremost explanatory ( Thornley and 
Johnson, 2000 ; Hammer et al., 2006 ). This type of model can be viewed as a bridge across levels of biologi-
cal organisation enabling the researcher to understand the behaviour of a system based on the knowledge 
gained by experimentation on its key component systems ( de Wit, 1982 ). Experience has indicated that 
stable and credible models usually do not include components that simulate physiological determinants 
occurring at more than two levels of organisation away form the target level ( Hammer et al., 2004 ; Sinclair
and Seligman, 1996 ). Explanatory models thus focus on modelling processes that are formalised as rate 
variables ( Figure 2   ; de Wit, 1982 ; Loomis et al., 1979 ). The separation of states of the system from underpin-
ning determinant processes enables the identifi cation of useful links among the environment, physiological 
processes and genetic determinants, and to formalise these links as metaprocesses that provide the backbone 
for GP modelling ( Figure 2b ; Tardieu, 2003 ; Hammer et al., 2006 ).

    2.1.    Anatomy of a crop model 
    Figure 3    highlights interactions between crop processes, and between crop processes and the environment, as 
captured in a generic simulation model. Algorithms associated with key aspects of plant growth and devel-
opment are critical features of crop models. Plant development sets out the master control of the timing of 
events in the plant life cycle (i.e. transition between vegetative and reproductive growth; duration of repro-
ductive growth). Plant growth is driven by organ development (e.g. canopy, roots), and the ability of the crop 
to capture resources (light, water and nitrogen) and convert them into vegetative and reproductive biomass. 

    2.1.1.    Development 
   The prediction of the duration of the crop life cycle, and the timing of milestones that affect resource capture 
and partitioning, is the central component of any crop model; Chapter 12 summarises the environmental 
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FIGURE 2 
       (a) Representation of a system model using a state-variable approach and drawn according to the convention of  Forrester (1961) . 
(b) Integration of the NK  model to predict systems state based on any genetic architecture via its effects on process rates.    
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       Schematic of major components of a crop model, their interactions among components and with the environment.    
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and genetic controls of crop development. There are many models of crop development through the various 
phases of the crop life cycle ( Hammer et al., 1989 ; McMaster and Wilhelm, 1997 ; Ritchie and NeSmith, 
1991 ; Grimm et al., 1994 ; Erskine et al, 1990 ; Sinclair, 1996 ). Because the genetic architecture of plant devel-
opment is only incipient ( Simpson et al., 1999 ; Koornneef et al., 1998 ; Corbesier et al., 2007 ; Tamaki et al., 
2007 ), models of crop development remain empirical descriptions of the relationship between development 
rates and temperature and photoperiod. The metaphor of physiological day is an appealing and intuitive 
approach to model crop development. The concept proposes that under optimal temperature and photo-
period, the development rate is at its maximum and that the rate decreases as these conditions deviate from 
the optimum ( Hammer et al., 1989 ). Then a development milestone (e.g. transition of a meristem from 
vegetative to reproductive) is reached after  n physiological days, which is the inverse of the maximum devel-
opment rate. The algorithm that implements this concept is represented by the following set of equations 
(Grimm et al., 1994 ; Soltani et al., 2006 ):

R t F N F T( ) ( ) ( )= × (1)    

  where R ( t) is the development rate (derivative of development with respect to time) on day  t; F ( N) is the 
night length (or photoperiod) function; and F ( T) is the temperature function. F ( N) and F ( T) are computed 
each day and assume values between zero and one. A value of one represents the greatest development rate 
and occurs when one ‘physiological day ’ is achieved in one calendar day. The generalised representation of 
these multiple linear response functions is illustrated for F ( T ) as:   
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  where Tb   is the base temperature below which no development occurs;  T   opt1 and T   opt2 are the lower and 
upper bounds of the optimal temperature range for development; and  Tu   is the upper temperature limit for 
development. Similar equations could be used to model effects of abiotic stresses on development ( Boote
et al., 1998 ).   

    2.1.2.    Capture of resources and crop growth 
   Crop growth depends on the ability of the crop to capture resources and convert them to biomass. 
Assuming no nutrients or pest limitations, radiation and water are the key drivers of growth, and crop bio-
mass increments can be calculated by identifying whether the crop is primarily limited by radiation or water 
(Monteith, 1988 ; Chapman et al., 1993 ). Elsewhere, the book presents detailed accounts of capture and effi -
ciency in the use of water (Chapter 6), radiation (Chapter 7) and nitrogen (Chapter 8). Here we deal briefl y 
with radiation and water, from a modelling perspective. 

    2.1.2.1.    Radiation-limited growth 
   In light-limited situations, above-ground crop growth rate depends on the radiation intercepted and radia-
tion use effi ciency (RUE). RUE has been studied widely and considered relatively stable for many given spe-
cies ( Sinclair and Muchow, 1999 ). However, recent studies have identifi ed increases in RUE in modern elite 
maize hybrids ( Lindquist et al., 2005 ). Although the cause of this increase remains unknown, other studies 
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in wheat ( Miralles and Slafer, 1997 ) have linked differences in RUE with root –shoot partitioning for lines 
varying in height. RUE can be derived from the photosynthetic response to light of leaf elements in the 
canopy and is dependent on the leaf nitrogen status of those leaf elements, via effects on maximum pho-
tosynthetic rate ( Sinclair and Horie, 1989 ), and the amount and nature of the incident radiation ( Hammer
and Wright, 1994 ). Hence, RUE is a canopy-level measure of photosynthetic performance that sets limits on 
productivity under potential growth conditions. 

  The extent of radiation intercepted depends on the canopy leaf area and architecture. Light interception is 
commonly modelled via the Beer –Lambert Law of light extinction in a canopy ( Monsi and Saeki, 2005 ),
which quantifi es the exponential decay of light with increasing leaf area. The extinction coeffi cient ( k) is 
dependent on leaf angle (LA) in the canopy. Lower  k is associated with more erect leaves ( Monsi and Saeki, 
2005 ), which can increase crop growth rate and RUE in canopies with high leaf area index by distributing 
light more effectively over the layers of leaf area within the canopy ( Duncan et al., 1967 ). Hence, the devel-
opment of the canopy leaf area is critical to the dynamics of radiation-limited crop growth through the 
crop cycle. 

    2.1.2.2.    Water-limited growth 
   The demand for water in transpiration can be determined from the ratio of crop growth and transpiration 
effi ciency (TE), with the latter adjusted for the effect of daytime vapour pressure defi cit ( Tanner and Sinclair, 
1983; Sinclair et al., 1984 ). While this biophysical approach is robust for estimating transpiration demand, 
recent studies ( Kemanian et al., 2005 ) have indicated it needs some adjustments under low-vapour-pressure-
defi cit conditions (Section 6.4 in Chapter 7). 

   Water-limited situations occur when the potential supply of water from root uptake cannot meet transpira-
tion demand. In that situation, crop growth can be calculated as the product of the transpiration supply and 
TE ( Monteith, 1988 ; Chapman et al., 1993 ). The supply of water from the soil can be modelled via predict-
ing the depth of the root system and the amount of water that can be extracted from each occupied layer. 
The extraction potential follows an exponential decay equation ( Passioura, 1983 ) that depends on the mois-
ture content of the layer and a coeffi cient ( kl) that quantifi es the relevant soil –root system attributes that 
infl uence water extraction patterns. This approach, fi rst outlined by  Monteith (1986) , has been applied suc-
cessfully in a number of species ( Meinke et al., 1993 ; Robertson et al., 1993 ; Thomas et al., 1995 ;       Dardanelli 
et al., 1997, 2004 ).

   In water-limited situations, given any specifi c soil condition, crop water uptake depends on the nature of the 
plant root system and its spatial arrangement. The extraction front velocity of sorghum and maize roots is 
about 3     cm     day � 1 up to fl owering ( Robertson et al., 1993 ; Dardanelli et al., 1997 ). In both crops, a rooting 
depth of around 2    m has been observed by early grain fi lling. The lateral spread of root systems is usually 
not incorporated in crop models, but it can also infl uence their occupancy of the soil and uptake capacity. 
Studies on root architecture in wheat ( Manschadi et al., 2006 ) have noted a relationship among encompass-
ing seminal root angle (RA), root system architecture and consequent water extraction from the soil. The 
variety with the narrower RA occupied a smaller soil volume but was able to extract more water, especially 
at depth. In maize,  Campos et al. (2004)  observed differences in water extraction between old and modern 
maize hybrids. During a period of water limitation, the old hybrid extracted more water from shallow soil 
depth, whereas the new hybrid appeared to be more effective at depth. A simulation study that included 
a two-dimensional root development model showed that such differences in rooting behaviour provide a 
plausible explanation for genetic improvement of drought tolerance as a component of the historical maize 
yield trends in the US Corn Belt ( Hammer et al., 2008 ; Figure 1 ).  

    2.1.3.    Canopy development 
   The potential for both light capture and water use are dependent on the canopy leaf area and the nature of its 
display. In cereal crops, potential leaf appearance and expansion are controlled by temperature and modelled 
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as functions of thermal time that defi ne the temperature-driven rates of leaf initiation, appearance and 
expansion rate ( Tardieu et al., 1999 ; Hammer et al., 1993 ; Carberry et al., 1993 ; Birch et al., 1998b ; Chenu
et al., 2008 ; Ritchie and NeSmith, 1991 ). Potential rates  of area growth are then reduced by water status, 
nitrogen or carbohydrate availability if any of these factors become limiting. 

  Approaches to predicting canopy leaf area growth have been developed at whole-plant and individual leaf 
levels. At the whole-plant level, functions describing the progression of potential leaf area with thermal time 
have been used to estimate potential leaf area growth ( Amir and Sinclair, 1991 ; Hammer and Muchow, 1994 ;
Sadras and Hall, 1988 ). At the individual leaf level, functions quantifying the potential size of individual 
leaves have been used in conjunction with estimates of leaf appearance rate ( Birch et al., 1998a ; Dwyer and 
Stewart, 1986 ; Jones and Kiniry, 1986 ). A number of studies (e.g.  Birch et al., 1998b ; Clerget et al., 2008 )
have shown that leaf initiation and appearance rates are stable when expressed in thermal time units. 

   Perhaps the least understood yet complex determinant of canopy development is the process of canopy 
senescence. Senescence is an emergent behaviour of the canopy that results from the dynamic interplay 
among resource capture, reproductive growth, the very own structure of the canopy and internal and external 
signals. Approaches to predicting canopy senescence have been developed for whole plants and canopies. In 
the absence of water and nitrogen stress, senescence is often modelled as a function of thermal time ( Jones
and Kiniry, 1986 ; Muchow and Carberry, 1989 ; Sadras and Hall, 1988 ), potential plant leaf area ( Birch
et al., 1998a ) and the rate of green leaf area increase ( Villalobos et al., 1996 ). Models that simulate water 
and nitrogen balances simulate leaf area senescence as a proportion of green leaf area and the severity of the 
abiotic stress ( Jones and Kiniry, 1986 ) or as the result of the balance between nitrogen supply and demand. 
The latter suite of models enables nitrogen remobilisation  and sink strength to drive leaf senescence 
(Sinclair, 1986 ; Villalobos et al., 1996 ; Boote et al., 1998 ; Borrell et al., 2001). 

    2.1.4.    Reproductive growth 
  There are a number of approaches to simulating the growth of reproductive organs. The simplest models do 
not distinguish among yield components, fertile plants and tillers, fruit and seed number and weight; all 
components are lumped together in a coeffi cient (harvest index) that describes the fraction of total growth 
that corresponds to reproductive structures ( Figure 4a   ; Sinclair, 1986 ; Muchow et al., 1990 ; Hammer et al., 
1995). This approach is robust for the simulation of variation in yield across a range of environments but 
lacks suffi cient detail to describe genotypic effects such as differences in maturity in sorghum ( Hammer and 
Broad, 2003 ), as well as other genotypic effects underpinning yield improvement and tolerance to stresses. 
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More detailed models simulate barrenness, grain set and growth as separate processes. Grain growth is often 
simulated using a linear approximation of the commonly observed sigmoid growth pattern. The maxi-
mum grain growth rate is assumed characteristic of the genotype and independent of the kernel number 
(e.g. Duncan et al., 1978;  Jones et al., 2003 ). Recent fi ndings in maize questioned this assumption and sug-
gested the need to model potential kernel growth rate as a function of plant growth per kernel around fl ow-
ering time ( Gambín et al., 2006 ). Once the potential is established, realised grain growth rate is determined 
by daily plant growth and the extent of carbon and nitrogen remobilisation (e.g.  Jones et al., 2003 ; Keating 
et al., 2003 ; Boote et al., 1998 ).

   Grain set is often modelled as a function of cumulative intercepted radiation ( Ritchie and Alagarswamy, 
2003 ; Andrade et al., 1993 ), crop growth rate (e.g.  Andrade et al., 1999 ; Jones et al., 2003 ; Jiang and Egli, 
1995; Vega et al, 2001 ; Tollenaar et al., 1992 ) or ear (panicle) growth rate ( van Oosterom and Hammer, 
2008 ) during a critical developmental period around fl owering. The onset and duration of the critical win-
dow for grain set determination varies among crops (e.g.  Otegui and Bonhomme, 1998 ; Fischer, 1985;  Jiang
and Egli, 1995 ). Critical windows for grain set are discussed in Chapters 12 (Section 5) and 15 (Section 
3.2.2) from a breeding perspective and in Chapter 3 (Figure 4) from the viewpoint of integrating crops in 
cropping systems. 

    Figure 4b and 4c  illustrate approaches to modelling kernel set in maize.  Figure 4b  is the function imple-
mented in CERES-Maize ( Jones and Kiniry, 1986 ) and could be considered the simplest approximation of 
the non-linear model in Figure 4c  ( Andrade et al., 1999 ; Tollenaar et al., 1992 ). Regardless of the mathemati-
cal formulation of the non-linear model, this form implicitly incorporates concepts of sink limitation due to 
maximum ear size (ME) and prolifi cacy (asymptote, ME;  Figure 4c ), silk exertion dynamics, synchronism in 
pollination, within-ear carbon allocation (CA) and kernel abortion (initial slope and curvature, SP;  Figure 4c )
and CA to the ear and barrenness (threshold, CA; Figure 4c ). Ritchie and Alagarswamy (2003)  extended the 
non-linear model shown in  Figure 4c  to simulate barrenness by modelling the fraction of ear-bearing plants 
as a function of cumulative intercepted radiation. An immediate advance on the framework, as proposed by 
Vega et al. (2001) , is to explicitly simulate carbon partitioning to the ear and how this mass is converted into 
viable kernels. More mechanistic approaches to simulate fruit set, often applied to simulate pod number in 
legume crops, consider these fruits as populations of competing and interacting sinks for carbon and nitro-
gen. In this framework, fruit number at any time during the reproductive stage of the crop results from the 
balance between the addition of fruits as determined by crop development and the removal of fruits resulting 
from abortion due to insuffi cient resources ( Wardlaw, 1990 ; Boote et al., 1998 ).   

    3.    MODELLING GENOTYPE –ENVIRONMENT–MANAGEMENT
SYSTEMS

   A fundamental step in modelling is to defi ne the purpose of the model or framework to be developed, the 
type of problems that the model should help investigate and solve and a concept map that relates the tar-
get natural system and the corresponding abstractions that become components of the framework ( Peart 
and Curry, 1998 ; Thornley and Johnson, 2000 ). These principles were followed to design applications of 
crop growth models, and associated physiological concepts, to enhance plant breeding ( Cooper et al., 2002 ;
Chapman et al., 2003 ). More often, these applications have focused on valuing traits and attempts to design 
universal ideotypes (e.g.  Boote and Tollenaar, 1994 ; Boote et al., 2001 ; Aggarwal et al., 1997 ; Yin et al., 2003 ;
Sinclair and Muchow, 2001 ), and to understand genotype by environment interactions (         Chapman et al., 
2000, 2002a, b ; Löffl er et al., 2005 ). The development of these latter methods was dominated by typological 
thinking (e.g.  Donald , 1968 ; Long et al., 2006 ; Century et al., 2008 ; Lee and Tollenaar, 2007 ) rather than 
population genetics concepts (e.g. frequency of favourable alleles, traits and phenotypes changing in a breed-
ing population) as proposed in evolutionary ( Nowak, 2006 ) and breeding studies ( Cooper and Podlich, 
2002 ). Approaches that sought to fi nd universal ideotypes have imposed limitations on the successful 
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integration of physiological knowledge into breeding programs by largely ignoring breeding objectives, 
germplasm context dependencies and genetic sources of unexplained phenotypic variation, and by often 
placing undue reliance on the ability of models to connect genetics and physiology to credibly predict sub-
tle interactions and feedbacks associated with genetic variation for traits within the reference germplasm of a 
breeding program ( Hammer et al., 2002 ).

    3.1.    Breeding objectives and purpose of framework 
   To defi ne a relevant context for modelling the G     �     E �M system, it is convenient to distinguish between 
breeding objectives where: 

     (i)   a genetic answer to the problem is known; for example, a target genotype has been identifi ed, and 
the objective is to close the genetic gap between the current germplasm and the defi ned target to 
test the hypothesis, for example, to increase resistance to a biotic factor by introgressing alleles from 
exotic germplasm; 

     (ii)   plausible genetic answers to the problem are currently unknown; for example, to increase grain yield 
or drought tolerance beyond those of the elite commercial products.    

   It is clear that the opportunity for modelling and physiology to contribute to plant breeding is closely tied to 
the second class of breeding objective, and that these should be components of a suite of methods to help 
breeders address questions about trade-offs between traits, the structure of adaptation landscapes, plausible 
selection trajectories towards interesting trait phenotypes and genotypes, the likelihood of fi nding improved 
genotypes in the adjacent possible genetic space and outcomes of competing selection and breeding strate-
gies ( Hammer et al., 2006 ).

    3.2.    Concept map 
    Figure 5    shows a simplifi ed yet extended concept map to build a G     �     E �M system ( Cooper and Hammer, 
1996). Cooper et al. (2002)  formalised the concept that was later demonstrated in a theoretical study for 
sorghum by  Chapman et al. (2003) . The testing of the hypotheses proposed in the theoretical study is cur-
rently underway ( Hammer et al., 2005 ). In this dynamic and iterative framework, empirical data are contin-
ually analysed and used to encode knowledge for model building and enhancement ( Podlich et al., 2004 ).
Model-based predictions and concepts become genetic, physiological and agronomic hypotheses to test 
through experimentation in the real world of the target G     �     E �M system. A central concept to the quantita-
tive framework is that of adaptation landscapes to represent the complexity of the G     �     E �M system to be 
explored, equivalent to the concept of fi tness landscapes discussed in evolutionary studies ( Wright, 1932 ;
Kauffman, 1993 ; Fontana et al., 1989 ). Applying this framework, plant breeding can be viewed as a set of 
search strategies applied to that landscape or search space and constrained by the germplasm available to 
the breeder, the prescribed agronomic management and the environments sampled in the fi eld trials. In 
this framework, a breeding population can be thought of as a cluster of individuals located at neighbouring 
positions that fl ow through regions of the adaptation landscape in response to selection ( Kauffman, 1993 ;
 Cooper et al., 2002 ).

    3.3.    Defi nition and consideration of the search space and 
adaptation landscapes 
  The search space could be defi ned by the outcome of all possible combinations of genomic regions, environ-
ments and management practices. A narrow-sense defi nition of this space, perhaps a practical one, assumes 
limits imposed by the germplasm available to the breeder, the target agronomic management and the com-
position of the TPE. A broad-sense defi nition can extend the search space to include novel cropping systems 
(Section 5 in Chapter 3), alternative environment scenarios (Chapter 20;  Ainsworth et al., 2008 ; Karl and 
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Trenberth, 2003 ) and novel sources of germplasm and engineered genetic elements (e.g.  Century et al., 2008 ).
The G     �     E �M search space has an associated adaptation landscape. The  E(NK) model ( Box 1 ), and an infor-
mal extension to accommodate M, provides a framework to consider this landscape. 

   A number of approaches were proposed to parameterise the  E(NK) model and assign a fi tness value 
to a given genotype: 

    1.   constructing Boolean networks and assigning fi tness contributions to each gene from a statistical 
 distribution ( Kauffman et al., 2004 ; Kauffman, 1993); 

    2.   defi ning inheritance models using empirical evidence from quantitative genetics parameters ( Wang 
et al., 2003 ; Cooper et al., 2005 );

    3.   specifying gene networks to represent attributes of known genetic networks and biochemical path-
ways (e.g. Ravasz et al., 2002 ; Bhalla and Iyengar, 1999 ; Peccoud et al., 2004 );

    4.   directly parameterising, using results from mapping studies ( Cooper et al., 2005 );

    5.   considering the  E ( NK ) model as the consequence of  N  genes that control variation for physiologi-
cal traits, the number of  E  identifi ed for the TPE and the physiological relations encoded in a crop 
model that determine the patterns of crop growth and development ( Cooper et al., 2002 ; Chapman
et al., 2003 ; Hammer et al., 2005 ).   
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   Approach 5 can be considered as partitioning the predictable component of the GP relationship continuum   
into gene-to-trait (physiological process) and trait-to-phenotype relationships; crop models predict crop per-
formance phenotypes associated with trait performance (e.g. yield), based on the interplay among traits, 
environment cues and resources and management ( Figure 5 ).

    3.4.    Crop modelling as a component in gene-to-phenotype mapping 
   The links between genes and phenotypes can be approached using top-down or bottom-up methods. Top-
down methods use physiological dissection and integration via crop modelling to work from whole-plant 
phenotypes to the molecular genomic level ( Hammer et al., 2004 ). This is also the classical forward genet-
ics approach used to study the genetic architecture of traits; observe phenotypic variation and attempt to 
determine an appropriate genetic model to explain the phenotypic variation. When applying crop models 
to enhance genetic discovery, the central paradigm of this method is the focus on understanding and mod-
elling processes at or around the level of organisation at which phenotypic predictions are being targeted 
and use a level of abstraction necessary to model processes and functional controls following the philoso-
phy pioneered by  de Wit and Penning de Vries (1983)  of ‘modelling plant hormone action without mod-
elling the hormones ’. The bottom-up approach integrates knowledge at the molecular level, across levels 
of organisation, to explain trait phenotypic variation ( Minorsky, 2003 ; Yuan et al., 2008 ). This method is 
aligned with the reverse genetics approach to gene discovery (Section 2 in Chapter 14). It has been argued 
that the application of such bottom-up approaches to understand the genetic architecture of complex traits 
would face several challenges common to the study of other complex systems and in particular the chal-
lenge of integration of genetic information to capture emergent behaviour at the whole-plant level, with 
limited scientifi c understanding ( Hammer et al., 2004 ). Simulation and propagation of errors across spatial 
and temporal scales that could vary by orders of magnitude would complicate making accurate predictions 
(Thornley and Johnson, 2000 ).

    3.4.1.    From the top-down 
  Top-down approaches have been tried with variable success.  Yin et al. (2003)  described the use of a crop 
model for barley based on the SUCROS crop model ( Goudriaan and Van Laar, 1994 ) with quantitative 
trait loci (QTL) mapping to predict  yields from QTL allele information. The model used as inputs the spe-
cifi c leaf area, the leaf N concentration, the fraction of biomass partitioned to leaves and to spikes and 
the separation of the life cycle into vegetative and reproductive stages. Using 94 recombinant inbred lines, 
these parameters were mapped, allele values for each QTL and trait calculated and yield predictions made 
using the ecophysiological model. Predictions for yield were clustered in two meaningful groups, based 
on two- and six-row types of virtually constant yield within each group. A similar study that used a crop 
model to link information for known loci and model parameters led to the Genegro model ( White and 
Hoogenboom, 1996 ). This model incorporated effects of seven genes affecting phenology, growth habit and 
seed size of common bean ( Phaseolus vulgaris L.). The parameters in the Genegro model were derived from 
the states of alleles at each of the seven loci, using a set of linear functions. These linear functions were esti-
mated by regressing allele values (alleles were coded as either 1 or 0) against model parameters calibrated 
(‘reverse engineered ’) using a set of fi eld trials. Genegro accurately predicted dry bean phenological develop-
ment but poorly explained yield variations between sites ( Hoogenboom et al., 1997 ). These two examples 
demonstrate the limitations of using reverse engineering approaches to GP modelling and the importance 
of understanding the genetic architecture that controls the trait of interest. The ability of Genegro to predict 
bean phenology is due to a fundamental understanding of the genetic controls and genotypic variability 
on the response of beans to temperature and photoperiod ( Coyne, 1970 ; Kornegay et al., 1993 ; White and 
Laing, 1989 ).

  GP models developed for individual physiological components showed promising results for both plant 
development ( Messina et al., 2006 ; Yin et al., 2005 ) and leaf growth ( Reymond et al., 2003 ). Yin et al. 
(2005)  combined ecophysiological modelling for phenology (of the form presented in Eq.  1) and QTL 
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composite mapping to predict barley response to temperature and photoperiod. Parameters for the eco-
physiological model were fi rst estimated for genotypes, and QTL mapping was conducted on the popula-
tion variation for these parameters. Using the allele values for each QTL and consequent model parameters, 
predictions were made for a set of recombinant inbred line genotypes in eight environments. The QTL-
based model accounted for 72% of the observed variation among the recombinant inbred lines.  Messina
et al. (2006)  used a photothermal model (Eq. 1) to determine allele values at six QTL loci for soybean 
model parameters. The model accounted for 75% of the time-to-maturity variance when tested in multi-
environment trials (MET). Reymond et al. (2003)  mapped QTL for the parameters of an ecophysiological 
model of leaf elongation rate (LER) for maize ( Ben Haj Salah and Tardieu, 1997 ),

LER T T a bVPD c= − + +( ) ( )0 ψ (3)    

  where T is meristem temperature, VPD vapour pressure defi cit and  c  soil water potential;  b and c are con-
stants coding for the response of LER to VPD and soil water potential after correction for  T effects; a and T  0  
are the slope and x-intercept of the LER response to meristem temperature. Under optimal soil water and 
VPD conditions, LER becomes a function of temperature alone and the model becomes equivalent to Eq.  1.
Upon parameterisation of 11 recombinant inbred lines at marker loci, the model accounted for 74% of the 
variability of LER. Further evaluation demonstrated the model useful for describing genetic variation in LER 
for a large number of recombinant inbred lines ( Sadok et al., 2007 ).   

    3.4.2.    Genes, traits, phenotypes and adaptation 
   The LER model is a useful example to illustrate the concept of partitioning the GP continuum into gene-
to-trait and trait-to-phenotype relationships and to connect the biophysical and the  NK models. The state 
model in Eq. 3 can be reformulated to formally incorporate QTL effects as 

dL

dt
T w w w wij i ij i ij i ij i= − ∑ ∑ + ∑ + ∑( )( )QTL QTL  QTL VPD QTLψ (4)    

  where wij are allele values of each QTL i for the parameter j. Further generalisation suggests specifying Eq. 4
in terms of the NK  model as   

dL

dt
T NK NK NK NKj j j j= − + +( )( )VPD ψ (5)

     

  where the NK model is allowed to vary among parameters  j. That is, the genetic networks associated with 
each of the model parameters could have common components; pleiotropic effects are formally incorpo-
rated via shared nodes among networks; epistasis is implemented as described earlier ( Box 1 ). This formu-
lation based on the NK model can be extended to the E ( NK) model where network topology is allowed to 
vary in response to environment cues. Error terms could be included in the model to account for compo-
nents of the unexplained variation in the GP relation continuum ( Cooper et al., 2005 ).  

   The model in Eq. 5 fully describes the gene-to-trait relation. However, Eq.  5 applies only to single leaf and 
scaling of some sort from the organ to the whole plant is necessary to map the G     �     E �M space into the phe-
notype space (e.g. plant leaf area).  Chenu et al. (2008)  developed a model that coordinates the growth of 
all leaves of a plant and uses the single-leaf LER model to drive growth. The framework was implemented as 
a component of APSIM ( Keating et al., 2003 ), which provided the dynamic feedback effects on leaf growth 
via transpiration and soil water uptake. Because the LER model is integrated within a crop growth-m odelling
framework, the likely impact of genetic variation for QTL affecting LER on adaptation (e.g. grain yield) 
could be assessed as demonstrated in previous studies for sorghum ( Chapman et al., 2003 ) and soybeans 
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(Messina et al., 2006 ). In summary, crop models have the potential to map the G     �     E �M space into pheno-
type and adaptation landscapes. To enable these connections, however, thorough basic physiological and 
genetic studies are necessary to support the model architecture and provide validated evidence for the physi-
ological determinants of genetic variation in adaptive traits.   

    3.5.    Breeding programs as search strategies in genetic space 
   Plant breeders create new genotypes with improved crop performance and adaptation to a TPE by observing, 
understanding, predicting and creating new trajectories in genotype and phenotype space. Three fundamen-
tal processes under the breeders ’ control support the creation of these trajectories: (i) development of geno-
typic novelty through strategic sampling of germplasm, recombination and segregation; (ii) design of testing 
systems that adequately sample the TPE for evaluation of cultivars and expose genetic variation for traits of 
interest; and (iii) selection as a means to change gene frequencies in the germplasm to improve adaptation 
relative to the current set of cultivars. Breeders ’ decisions on these three components defi ne the breeding 
strategy, and therefore the regions of the adaptation landscape that the breeding program would explore in 
search of peaks of adaptation and crop performance. 

   Breeding simulation provides a means to predict trajectories in GP space. QU-GENE ( Podlich and Cooper, 
1998) is a computer simulation platform to specify genetic models in the context of the E ( NK) frame-
work and G     �     E �M systems in order to evaluate alternative breeding strategies. The stochastic components 
in QU-GENE implement the simulation of genetic recombination and segregation, within the search for 
genotypes with higher fi tness in the adaptation landscape; note the analogy between this component in 
QU-GENE and global optimisation algorithms ( Mitchell, 1996 ). Specifi c modules in QU-GENE simulate the 
processes involved in the creation, evaluation and selection of genotypes within the breeding program and 
implement the simulation of breeding strategies such as mass selection, pedigree and single-seed descent, 
double haploid, S1 recurrent selection and half-sib reciprocal recurrent selection.   

    4.    CASE STUDY: MAIZE BREEDING IN THE USA 

   Despite the complexity of the mechanisms underpinning yield determination, conventional breeding has 
effectively increased maize yield in well-watered and water-limited environments of the US Corn Belt ( Figure 1 ;
Duvick and Cassman, 1999 ; Duvick et al., 2004 ; Campos et al., 2006 ). Trajectories from over 50 years of 
maize breeding in the US Corn Belt show that many traits have changed markedly, even when there was no 
direct selection for these traits. These include decreases in tassel size, protein concentration in kernels, rate 
of leaf senescence during grain fi lling, root and stalk lodging, rows of kernels per ear, and anthesis-silking 
interval, and increases in LA (more erect leaves), ears per plant, kernel weight and harvest index ( Duvick and 
Cassman, 1999 ; Duvick et al., 2004 ; Lee and Tollenaar, 2007 ). The future direction of these trajectories is a 
subject of debate ( Lee and Tollenaar, 2007 ; Century et al., 2008 ; Tuberosa et al., 2007 ; Pennisi, 2008 ) and 
opens the opportunity to apply the framework described in the previous section to address questions of rel-
evance to breeding. This section illustrates the use of a coupled crop system  – breeding model to study past 
trajectories in GP space and outline plausible future trajectories in maize breeding. 

    4.1.    Genotype –environment–management system 
   This study used the GP framework described in  Section 3  to build a G     �     E �M system representative of past 
and present maize production in the US Corn Belt. The breeding objective is to improve yield in the TPE 
beyond that of current germplasm. The purpose of the framework is to study past trajectories in maize 
breeding and to provide insights on future trait trajectories, given representative environment types and 
plausible changes in management. Components of this framework were constructed by modelling adaptive 
traits of interest to breeders based on their physiological determinants ( Section 2 ); linking genetic variation 
to those determinants in the context of the NK model ( Box 1 ); simulating maize phenotypes for relevant 
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genotypes, managements and environments; classifying production environments ( Section 4.1.3 ); and sim-
ulating trait trajectories in genetic space for breeding programs conditioned to defi ned environments and 
management ( Figure 5 ).

    4.1.1.    Trait modelling 
   A Pioneer proprietary module of APSIM-Maize was developed to incorporate adaptive traits of interest for 
trait variation relevant to Pioneer elite hybrids. The module includes algorithms that implement concepts 
that link RA with spatial and dynamics aspects of root exploration and occupancy of soil layers; thus RA 
controls time of access and intensity of resource capture ( Hammer et al., 2008 ). LA and RUE are connected 
by implementing a series of equations to model canopy photosynthesis ( Duncan et al., 1967 ; Hammer
and Wright, 1994 ; Loomis and Connor, 1992 ). The module includes algorithms to model aspects of maize 
reproductive biology relevant to yield, including the connections between kernel set and CA to the ear and 
within the ear ( Vega et al., 2001 ; Cárcova and Otegui, 2007 ), silking dynamics and synchronism in pollina-
tion (SP) ( Cárcova et al., 2003 ; Borrás et al., 2007 ) and ME ( Tollenaar et al., 1992 ). The model accounted 
for the connection between growth and development ( Borrás et al., 2007 ), the co-regulation of kernel set 
and kernel size ( Gambín et al., 2006 ) and their response to timing of drought stress during reproductive 
stages.  Figure 6    compares simulated and observed yields for Pioneer hybrid P90-1 grown in a rain-free envi-
ronment under six irrigation regimes. These regimes covered full irrigation control (FI) and fi ve treatments 
where water was withdrawn for 500 °Cd for overlapping periods separated by 100 –200 °Cd (S1 –S5) at the 
commencement of the treatment. 

    4.1.2.    Linking genotypes and traits 
   To demonstrate an application of the framework, genetic variation for fi ve adaptive traits was defi ned using 
an additive genetic model based on three genes (equal effects) and two alleles per locus ( NK       �   3:0). It was 
assumed that there were unique sets of genes for each trait and that genes were unlinked. Thus, for the 
purpose of demonstration here, the genetic model does not include epistasis and pleiotropic effects at the 
level of the genetic architecture of the fi ve traits. For a single trait, this genetic model results in 27 unique 
genotypes but only 7 unique expression states, given the additive effects model. For each locus, one allele 
was considered to increase expression relative to the alternative allele. For example, at a given gene  A, it is 
defi ned that allele  A increases trait expression ( �) relative to the allele  a ( �). Then the expression state for 
the genotype is defi ned by the sum across genes of the effects of the  � alleles. For example, given the addi-
tive model, the genotypes  AAbbcc, aaBBcc, aabbCC and AaBbcc all have the same expression state of two 
(e.g. two positive alleles each). For this simulation experiment, which was based on fi ve adaptive traits, the 
genetic model defi nes 14      �     10 6 genotypes but only 1.6      �     10 4 expression states. This fi rst approximation of 
the genetic architecture of the component traits is substantiated by multiple QTL mapping studies. It is the 
simplest representation suggested by the data that would enable the simulation and representation of the 
full adaptation landscape. Other genetic models could be considered and implemented in the framework, 
and would have generated different relations among genotypes, expression states and phenotypes. 

   This simulation experiment included genetic models for fi ve adaptive traits: RA, LA, CA to reproductive 
growth, synchronous pollination (SP) and potential ear size (ME). Model parameters for the latter three 
traits could be interpreted as determinants of CA, SP and ME in the current models of kernel set outlined in 
Figure 4c . Herein, we refer to these traits and interpret the results in the context of the kernel set response to 
plant growth rates. 

    4.1.3.    Environmental classifi cation 
   Maize phenotypes were simulated for a range of plant densities (8 and 12     pl     m � 2), soil types (high and low 
soil water holding capacity;  Löffl er et al., 2005 ), 4 soil water contents at sowing and 50 years of weather in 
central Iowa, using APSIM-Maize ( Keating et al., 2003 ) and Pioneer proprietary modules. Soil water content 

4. Case Study: Maize Breeding in the USA
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at sowing was estimated by simulating long-term soybean –maize rotations and clustering results to form 
groups of water content distribution in the soil profi le at sowing. Each combination of plant density, soil 
type and soil water content at sowing defi nes a unique environment and could thus be considered as one of 
many possible outcomes in a multi-environment trial. 

   Each of the 800 (2      �      2  �  4      �     50) simulated production environments was classifi ed based on water sup-
ply and demand patterns ( Hammer et al., 2005 ; Chapman et al., 2000 ) for a reference genotype. APSIM-
Maize was parameterised and run for the Pioneer hybrid 3394 as the reference genotype; see  Hammer et al. 
(2008)  for model parameterisation. Daily outputs of the ratio of water supply to demand were averaged 
every 100 °Cd from emergence. Cluster analysis, using the  k-means algorithm, revealed four major environ-
ment types depicted in Figure 7   . The frequency of occurrence was 18% for severe terminal stress (ET1), 20% 
for early grain fi ll stress (ET4), 25% for moderate terminal stress (ET2) and 37% for no stress (ET3). 
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    4.1.4.    Adaptation landscape 
   The adaptation landscape was generated with yield as the measure of fi tness. APSIM-Maize was run for each 
of the 16      �     10 4 expression states corresponding to unique combinations of adaptive traits, and each of the 
1.6     �     10 3 environments and management combinations. Model parameters not determined by a genetic 
model, thus by any expression state, were set to the values determined for the hybrid 3394. This is a realistic 
representation of the execution of the framework in a real breeding program where genetic improvement 
is sought relative to a reference germplasm. For the purpose of this example, all conclusions about genetic 
improvement are drawn in reference to the hybrid 3394. 

    4.1.5.    Breeding simulation 
   For each environment type and management, reciprocal recurrent selection with pedigree selection within 
two heterotic groups was simulated using QU-GENE ( Podlich and Cooper, 1998 ; Podlich et al., 2004 ).
The QU-GENE software managed the creation, evaluation and selection of genotypes within the breeding 
program. Reference breeding populations were created by specifying allele frequencies to 0.5 in two heter-
otic groups; any other starting point could have been considered. The evaluation system was set to a single 
breeding program and 10 testing sites. Each testing site sampled the TPE ( Figure 7 ) in proportion to the 
frequency of occurrence of each environment type. Trait trajectories in G space conditioned to E and M 
emerge from breeding simulations that are similar to the trajectories reported for the sequence of hybrids 
in Figure 1 . Selection experiments were conducted under a unique environment and management (e.g. ET1 
and 8     pl     m � 2 ), and for a sample of environments and plant populations.   

    4.2.    Structure of simulated adaptation landscapes 
   Adaptation landscapes could be characterised by different metrics and graphical representations ( Kauffman, 
1993; Cooper and Podlich, 2002 ; Wright, 1932 ; Nowak, 2006 ; Fontana, 2002 ). In this example, the adapta-
tion landscape was represented as a set of conditional cross sections for grain yield in the G and P dimen-
sions (herein referred to as a GP plot). The grain yield distributions are conditional on the expression states 
for a defi ned trait. For example, for LA, there are seven expression states and therefore seven yield distribu-
tions. The yield distribution is generated by the yield variation created by all other traits conditional on the 
defi ned expression level for the selected trait of interest. The GP dimension views can be constructed for 
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specifi c environments or a combination of environments. Genotype relative frequencies at regular intervals 
for yield are shown as a heat map to visualise the distributions ( Figure 8   ). This graphical representation of 
landscapes allows the identifi cation of features such as position of global maxima, trends in central ten-
dency and local optima for yield with respect to G and expression states, presence of saddles and plateau 
regions. The global maximum is identifi ed as the maximum in the  y-axis across all frequency distributions. 
In the example presented for drought stress environments, this maximum corresponds to genotype  AABBCC  
for RA and ddeeff for LA ( Figure 8 ). Local optima correspond to the maximum yield conditioned to G. Both 
global and local optima provide information about opportunities and paths to yield improvement in the 
adjacent genetic space, given the reference populations of the breeding program. 

   Trends could be identifi ed in local optima and central tendencies. In environment ET3, trends in yield with 
respect to the expression state of LA are evident in both central tendency and local optima ( Figure 8 ). In 
contrast, in ET1, the landscape is rather fl at for genotype bins 1 –4 (genotype ddeeff corresponds to bin 1), 
but there is a marked non-linear trend in the local optima. This trend reveals a point of instability due to 
the presence of a saddle and has implications for breeding. Yield increase is feasible by either increasing or 
decreasing LA. The resulting changes in allele frequencies, and LA phenotypes, in a breeding population 
selected for yield increase, will depend on the initial frequencies of alleles. At this point in G space, the 
behaviour of the breeding system and the potential for genetic improvement become dependent on initial 
conditions. The global maximum in ET1 can only be reached by increasing the frequency of  � alleles. The 
alternative trajectory leads to a higher peak in the adaptation landscape but compromises the potential for 
continuous genetic gains due to variations in LA. 
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   Changes in environment types can induce deformations to the adaptation landscapes. The magnitude of any 
such deformation depends on the underlying trait physiology.  Figure 8  illustrates this effect for RA and LA. 
Yield increased with increasing frequencies of � alleles conditioning the expression states for RA. Greater 
water capture associated with deeper root systems had a positive effect on simulated yields under ET1. In 
contrast, there were no marked effects on yield in ET3, which is manifested as a smooth and fl at landscape 
(Figure 8 ). The comparison of landscapes for LA in ET1 and ET3 reveals a trade-off between light capture 
and RUE and water use. Yield increased with the increasing frequency of  � alleles (erect-leaf-type pheno-
types) under no-stress environments where light capture and its distribution within the canopy limits car-
bon assimilation and yield. The opposite pattern is evident in drought stress conditions where improved 
RUE generates higher water use, which intensifi es the severity of stress during reproductive stages. Water 
conservation strategies that improve the partitioning of water use between vegetative and reproductive stages 
are discussed in Chapter 6 (Section 3). 

   The landscape structure generated for this small G     �     E �M system has complex features as viewed through the 
GP plots. The complexity of the landscape is assessed by the analysis of all GP cross sections. The presence of 
weak trends in a given cross section indicates that a given trait is not a strong determinant of yield response 
in the context of all other traits ( Figure 8 ). But the absence of any trends across all cross sections indicates 
a rugged landscape, where peaks in grain yield performance are dependent on the expression states for 
multiple traits. The example presented in  Figure 8  illustrates this contrast. While the adaptation landscape 
view for ET3 is determined to a large extent by the frequency of  � alleles for erect-leaf-type phenotypes, 
landscapes for ET1 are rather fl at, with trends for both RA and LA and the presence of saddles. Adaptation 
landscapes under drought stress are more complex than in the absence of stress, and the GP plots indicate 
multiple paths are plausible for crops to cope with stress. The characterisation and understanding of adap-
tation landscapes and how these respond to E help to study, interpret and anticipate response to selection. 
The approach allows assessment of the relevance of traits in the context of all other traits under consider-
ation in a specifi c environment, and aids in strategically selecting germplasm for breeding objectives that 
target specifi c sections of GP space. 

    4.3.    Exploring trajectories in GP space: what traits can 
improve adaptation? 
   Breeding simulation is a step beyond the study of the structure of adaptation landscapes and has been 
used to assess breeding strategies ( Podlich et al., 1999 ; Chapman et al., 2003 ; Wang et al., 2003 ; Cooper
et al., 2005 ) and the integration of molecular technologies into breeding methods ( Podlich et al., 2004 ;
Cooper et al., 2005 ; Hammer et al., 2005 ). In the example presented here, breeding simulation was used to 
study plausible trait phenotype trajectories in GP space under contrasting management and drought stress 
environments (       Figures 8 and 9 ). Each trajectory represents the average of an ensemble of 20 QU-GENE runs 
(i.e. 20 replications of the breeding program starting from the same reference breeding population). The 
common pattern across environment types and management in the allele frequency dynamics is the unique-
ness in the relevance of traits and their interdependence. The relevance of a given trait could be judged by 
the onset and the rate of change in allele frequencies conditioning the expression states of the trait, and the 
effects of traits on yield at other loci. When the MET was simulated at commercial plant densities, LA was 
the fi rst trait to change allele frequencies towards the  � alleles, reaching fi xation upon 20 cycles of selection. 
The direction of change, however, was opposite in the two environment types. LA decreased (shift towards 
erect leaf type) with increasing cycles of selection in ET3 (no stress) and increased (shift towards fl oppy leaf 
type) at about the same rate in ET1 (severe terminal stress). Similar patterns were simulated for high-density 
stands, but the rate of change was not as pronounced as under commercial density, and a delay in the onset 
of change was evident in ET3. 

  The frequency of the � alleles for RA increased in successive cycles of breeding when selecting for yield in 
drought environment type ET1. Conservative water use and enhanced water capture in deep soil layers dom-
inated the trajectories, particularly during the fi rst cycles ( Figure 9   ). The value of this yield improvement 
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strategy was demonstrated in maize populations selected for increased osmotic adjustment ( Chimenti et al., 
2006 ). Although this physiological mechanism underpinning the enhanced ability to access water stored in 
deep soil layers may not be valuable in some germplasm ( Bolaños and Edmeades, 1991 ), the effectiveness 
of the strategy to improve the maintenance of leaf area, growth and yield in the simulation experiments 
provides the basis for a testable hypothesis. The reduction in RA, resulting in a deep root system, implies a 
redistribution of root mass among soil layers. The feasibility of this alternative path towards accessing addi-
tional water in deep soil layers is supported by evidence of genetic variation in root architecture ( Tuberosa 
et al., 2002 ; Tuberosa and Salvi, 2006 ), variations in patterns of soil water uptake between modern and 
old hybrids ( Campos et al., 2004 ) and root architecture response to selection ( Edmeades et al., 2000 ). It 
is apparent from the breeding simulations that this strategy is not universal ( Figure 9 ) and its contribution 
to yield improvement is constrained to defi ned domains in the G     �     E�M space. Water use increased with 
increasing plant population, thus limiting some of the benefi ts of enhanced water capture as indicated by a 
lower rate of change in  � alleles for RA. Chapter 13 discusses in detail root attributes for improved capture 
of resources. 

   In high-stress environments, ET1 and 12     pl     m � 2, the breeding simulations showed that selection for yield 
favoured mechanisms to cope with stress. The frequency of  � alleles for CA and SP rapidly increased in 
successive cycles of selection. The interpretation of these changes is that selection for yield results in lower 
thresholds to biomass allocation to the ear, to kernel set, and vigorous and synchronous silking (       Figures 4c 
and 9 ). In contrast, when METs were simulated for low-stress environments and commercial plant populations, 
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       Mean changes in gene frequencies for alleles associated with root angle (RA), leaf angle (LA), potential ear size (ME), threshold
carbon allocation to the ear and barrenness (CA) and synchronous pollination (SP) with cycle of selection. Selection simulated for
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selection favoured the main mechanism to realise the environmental potential by increasing  � alleles ’ con-
tribution to augment light interception and RUE (as discussed above) and to increase ME. There was a con-
current increase in � alleles for both traits ME and LA. Empirical evidence supporting this trait trajectory was 
documented for mid-maturity maize selected in Argentina ( Luque et al., 2006 ). The frequency of � alleles for 
CA to the ear changed slowly from cycle 0 to 15. A break point becomes apparent following the realisation of 
improvements in resource capture and use effi ciency, and alleles for LA are close to fi xation in cycle 15 of the 
simulation; thus allocation to the ear becomes a limitation to yield improvement. 

    4.4.    Breeding opportunities for broad and specifi c adaptation 
   Plant breeders often face the dilemma of designing breeding strategies with the right balance of efforts 
directed towards breeding for broad versus specifi c adaptation. Necessary conditions for breeding for spe-
cifi c adaptation are the occurrence of repeatable environment types, and the existence of genetic variation in 
traits that generate positive, sizable and repeatable G     �     E �M interactions. Breeding simulations in  Figure 9 
could be studied as the outcome of a breeding strategy to evaluate opportunities for specifi c adaptation. Trait 
phenotype trajectories in Figure 9  suggest opportunities for improvements in both broad and specifi c adap-
tation to drought stress within the context of the simulated reference population of the breeding program. 
The increase in frequencies of � alleles contributing to higher CA and SP, regardless of the environment 
type and crop management, suggests a breeding strategy that favours selection for  � alleles for these traits as 
a means to improve broad adaptation. Although change in root architecture contributed to yield improve-
ment only in ET1 ( Figure 9 ), the absence of crossover G     �     E �M interactions (       Figures 8 and 9 ) suggests that 
selection for � alleles for RA could be one component of a breeding strategy seeking improvement for broad 
adaptation. Successful improvement for this trait can create genotypes with enhanced yield stability (i.e. less 
susceptibility to drought stress) and thus extend their domain of adaptation in the G     �     E �M space. It is also 
feasible to conceive selection for  � alleles for RA as a component of a breeding strategy designed to improve 
specifi c adaptation to drought stress. Because changes in allele frequencies for LA generated crossover G     �     E 
interactions ( Figure 8 ), this physiological trade-off forces plant breeders to accommodate selection for spe-
cifi c adaptation in the breeding program. To this end, it is necessary to formally defi ne the TPE based on 
the classifi cation of environments by type ( Figure 7 ). The application of weights to the data from the multi-
environment trials to match the environment-type expectations of the TPE, weighted selection strategy, was 
shown to increase response to selection ( Podlich et al., 1999 ).

   This study simulated genetic gains for yield when breeding for specifi c conditions ( Figure 9 ) relative to those 
attained if selection samples the TPE. Simulated genetic gains differed little for selection performed in only 
ET3 environments, compared with the entire TPE. In contrast, genetic gains for selection in ET1, regardless 
of the management, were double those attained when selection was conducted in the entire TPE (data not 
shown). Management contributions to the rate of genetic gains were evident but of lower magnitude than 
those due to environment variation. These results lead to the proposition that incorporating knowledge on 
G    �     E � M into breeding can increase genetic gain and hasten crop improvement. 

    4.5.    Opportunities to enhance molecular breeding 
   Since the discovery of molecular markers and their application to the construction of molecular maps and 
to the mapping and dissection of quantitative traits ( Lander and Botstein, 1989 ; Lander and Schork, 1994 ;
Paterson et al., 1991 ), molecular marker technologies have been successfully integrated into many aspects of 
plant breeding. Opportunities for molecular breeding and use of marker-assisted selection were the motiva-
tions for in silico studies and reviews (Chapter 14;        Cooper et al., 2005, 2006 ; Lee, 1995 ). But the realisation 
of the potential use of DNA markers to improve methods for predicting expected phenotypes of progeny 
from parental information as suggested by  Paterson et al. (1991) , and its utilisation in breeding programs, 
came about after signifi cant developments in analyses and prediction methods, often based on a mixed-
model framework (i.e.  Malosetti et al., 2007 ; van Eeuwijk et al., 2005 ; Boer et al., 2007 ), and improvements 
in and the deployment of information management technologies ( Cooper et al., 2006 ; Graham, 2008 ).
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  Many of the activities within molecular breeding rely on statistical models that summarise associations 
between genotypic and phenotypic variations. These statistical models often provide a static view of traits and 
their association with genomic regions (QTL). The treatment and analysis on a trait-by-trait basis limits these 
methods to effectively capture the dynamic relationships between traits, leaving to the breeder the subjective 
interpretation of the interplay and emerging trade-offs among traits. As evidence accumulates towards the 
need for considering epistasis and pleiotropy for the deployment of enhanced methods for molecular breed-
ing, it is opportune to contemplate the utility of the G     �     E�M modelling approach outlined in this chapter 
as a framework for considering the biological and physiological interplay of QTL, traits and environments 
in a way that adds value to the well-established and effective statistical framework for molecular breeding. In 
the G     �     E�M framework, epistasis and pleiotropic effects are emergent properties of the physiological frame-
work ( Hammer et al., 2006 ). The trait trajectories depicted in Figure 9  illustrate the conditional dependencies 
among traits to contribute to yield improvement. While the genetic models defi ned for all traits in this study 
were additive at the individual trait level, the grain yield value of the different alleles for a given trait is condi-
tional to the state of other loci as demonstrated by the non-linear structure of the trait trajectories in genotype 
space. These simulations suggest that physiological dissection and modelling can help assign biological func-
tion to QTLs, and explain and resolve G     �     E�M interactions, thus providing a foundation to improve molecu-
lar breeding strategies in maize. This argument could be extended to the application of the framework to 
known genes for the assessment of their function at the whole-plant level, that is, to assess the extent to which 
the effects of gene expression at the molecular level propagate across levels of organisation. The framework 
could be used for designing in silico breeding strategies that make use of transgenics as a step prior to the ini-
tiation of experimentation that would require signifi cant management and investment.  Hammer et al. (2005) 
demonstrated in a theoretical study of sorghum that marker-assisted selection could be improved (enhanced 
rate of yield increase over cycles of selection) by considering knowledge from trait physiology and modelling. 

    4.6.    How consistent are simulated trajectories with changes in 
traits due to genetic improvement for yield? 
  To interpret the results of the breeding simulation in the context of observed trait trajectories, we must defi ne 
the environment types, changes in management and selection objectives that prevail during the selection pro-
cess. Major breeding objectives are to increase yield and yield stability across years and geographies. Selection 
decisions in the past were mostly driven by data collected in the TPE; that is, a large fraction of the data driv-
ing selection decisions were obtained in environments that exposed maize crops to low drought stress ( Löffl er 
et al., 2005 ). However, as the TPE is by defi nition a mixture of environments, in certain years, drought stress 
could have contributed to the pool of data and germplasm improvement. Crop management also changed 
through time, with plant population, irrigation and N use increasing since 1960 ( Cassman and Liska, 2007 ).

   In the context outlined above for dominant environment types, management practices and breeding objec-
tives, the expectation set by outcomes of breeding simulation (       Figures 8 and 9 ) is to observe a rapid decrease 
in LA (towards hybrids with an erect leaf type) associated with improved RUE in high-density stands, to 
some degree deeper root systems selected in drought-prone environments and dry years and increased ker-
nel set due to higher resource allocation to the ear. Observed trait trajectories for selection in the north-
central USA compare well with the expectations from the breeding simulation ( Duvick et al., 2004 ; Figure
10   ). After the onset of the era of intensive agriculture in the early 1960s, LA scores increased linearly, reach-
ing a plateau denoted for hybrids released since the late 1980s. Breeding simulation indicated this trajectory 
in the absence of nitrogen limitations and in ET3 (       Figures 7 and 9 ), which together with ET2 (low stress 
around fl owering) accounts for 65% of environment types in the TPE. Both simulated and observed leaf 
scores (       Figures 9 and 10 ) indicated that breeding for yield had moved the breeding populations towards a 
region in the G space that optimises light capture and use effi ciency under E     �     M typical of intensive agricul-
ture, with apparent little room for further contributions to yield improvement. 

   Changes in root architecture in response to selection have not been documented. However, there is evi-
dence for a reduction in biomass allocation to roots in the topsoil ( Bruce et al., 2002 ). This observation is 
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consistent with a predicted trajectory towards deeper root systems and lower root density in upper soil layers 
(Figure 9 ). Lower RAs predict a more uniform water use pattern in depth and time as well as a more uni-
form biomass distribution in the profi le.  Campos et al. (2004)  showed that older hybrids use more (less) 
water from the top (bottom) soil layers than modern hybrids. As suggested by breeding simulation, these 
observed patterns of increased water capture and conservative water use may have resulted as a consequence 
of selecting hybrids with yield stability across locations and years. Based on simulated trait trajectories for 
ET1 environments, it is suggested that there is unrealised potential to progress further yield stability in main 
production areas in the maize belt and yield under drought stress. 

  Reproductive traits ME, CA and SP increased in successive cycles of breeding ( Figure 9 ), leading to the 
creation of hybrids with increased CA to the ear and increased kernel set for a given E and M ( Figure 4c ). 
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Empirical evidence and theoretical predictions agree well in that selection for yield increased the kernel 
number per plant, per ear and per unit area ( Chapman and Edmeades, 1999 ; Echarte et al., 2004 ; Campos 
et al., 2006 ; Luque et al., 2006 ; Tollenaar et al., 1992 ; Duvick et al., 2004 ; Edmeades et al., 2000 ), and fer-
tile ears per plant largely contributed to this increase ( Duvick et al., 2004 ; Chapman and Edmeades, 1999 ;
Tollenaar et al., 1992 ). Increased partitioning and reduced barrenness in the context of the modelling 
framework are related to the reduction in CA (       Figures 4c and 9 ). Simulated trait trajectories are consistent 
with measurements by  Echarte et al. (2004)  but not by  Luque et al. (2006)  and Tollenaar et al. (1992) .
In the latter two studies, model parameters linked to ME and CA to the ear were correlated. Because of 
such correlation, it is diffi cult to contrast model predictions with empirical evidence. The framework used 
in this study captures some aspects of the underpinning mechanisms causal of barrenness but further 
advancement on the model, perhaps through incorporating theoretical aspects of interplant competition 
(Pagano et al., 2007 ; Pagano and Maddonni, 2007 ), will be necessary to better connect genetic variation 
and physiological determinants of barrenness.  Luque et al. (2006)  observed increases in ME only under 
high-yield environments, in agreement with predicted trait trajectories in this study ( Figure 9 , environ-
ment type ET3).   

    5.    CONCLUDING REMARKS 

   This chapter reviewed and summarised theoretical developments towards a framework that integrates quan-
titative genetics, breeding simulation and modelling of physiological traits and dynamic GP relations. Such 
a framework is intended to enable breeders and agronomists to project trajectories in the G     �     E �M space 
into the future and gain insights on the consequences of manipulating genomes to the creation of improved 
crops for target management and environments. 

   A central concept emphasised throughout this study and applied to the different aspects of modelling and 
simulation is the iterative nature of the process, and thus the need to integrate modelling and simulations 
as one component of the breeding program. The execution of this framework is feasible only through such 
integration that forces individuals to align breeding objectives, physiological questions and genetic hypoth-
eses, which ultimately have to be tested in the breeding program. 

  This study demonstrated in silico the validity of a method to effectively explore the G     �     E�M state space, to 
integrate and apply physiological concepts to plant breeding and the value of leveraging this knowledge to 
develop improved crops. Nevertheless, executing this framework poses a number of grand challenges, and 
a signifi cant scientifi c and technological ground has yet to be covered. There is a clear need to advance the 
scientifi c debate about the detail and complexity needed for crop growth models to be able to integrate 
processes across levels of organisation while predicting emergent functional consequences for the organ-
ism. Related to this issue is the need for a considerable effort and investment in creating knowledge and 
developing robust links between genetic variation for adaptive traits relevant to breeders and the underly-
ing physiological determinants. Despite the agreement between observed and simulated trait trajectories 
for the past 50 years of breeding in the US Corn Belt, there is a clear need for a theoretical and empirical 
demonstration that these technologies can be used to improve future rates of genetic gain in elite breeding 
populations. 

  We are optimistic that breeding simulation will help understand observed breeding trajectories for traits 
contributing to yield improvement; identify emergent, in some cases counterintuitive, behaviour of the 
breeding system; and quantify trait and environmental context dependencies. This understanding, along 
with quantitative knowledge of QTL function, via trait dissection and integration using physiological mod-
elling and a G     �     E�M framework, will enable predictions to be evaluated in the target breeding program. 
This emerging breeding technology can help manage and adapt germplasm to effectively navigate through 
the G     �     E�M space, producing improved hybrids that meet the needs of changing farming systems and 
environments.   
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