

 Specification of the CSIRO
Common Modelling Protocol

AD Moore, DP Holzworth, NI Herrmann, E.Zurcher,
NI Huth, BA Keating & MJ Robertson

Version: 9 Oct 2009

1. INTRODUCTION...1

1.1. Formal definition of a simulation...2
1.2. Roles involved in defining and using simulations..3

2. DEFINITION OF ENTITIES WITHIN THE PROTOCOL...4

2.1 Components..4
2.2 Properties..4
2.3 Events and event handlers...5
2.4 Systems and simulations ...6
2.5 Messages...6

3. TASKS PERFORMED USING THE PROTOCOL ..7

3.1. Initialisation of a simulation ..8
3.2. Termination of a simulation...10
3.3. Computation of a time step..11
3.4. Transmission of driving property values ...12
3.5. Changing another component's owned property ..14
3.6. Transmission of an event ...15
3.7. Transmission of an error message..16
3.8. Recording and restoring the model state..17

3.8.1. Recording the model state..17
3.8.2. Restoring the model state ...18
Restoring a checkpoint...18

3.9. Changing the model structure ..19
3.9.1. Registration of a property or event ..19
3.9.2. Deregistration of a property or event...20
3.9.3. Adding a component to a system..21
3.9.4. Removing a component from a system ...22
3.9.5. Deactivating a component..23
3.9.6. Activating a component..23

3.10 Obtaining information about properties, components or events ...24

4. PROTOCOL MESSAGES ...25

4.1. Summary of protocol messages ...25
4.2. Protocol messages in detail..26

5. STANDARD PROPERTIES AND EVENTS..38

5.1. Standard component properties ...38
5.2. Standard event handlers...38
5.3. Time property ..38

6. DEFINITION OF DATA TYPES..40

6.1. Data Description Markup Language (DDML)...40
6.1.1. Examples of type elements..41

6.2. Units in properties and events..41
6.2.1. Units for real values...41
6.2.2. Units for integer values..43
6.2.3. Unit compatibility...43

7. SIMULATION DESCRIPTION MARKUP LANGUAGE (SDML) ..44

7.1. Specification of SDML..44
7.2. Simulation structure in SDML...44
7.3. Component and system initialisation in SDML ...45

8. OTHER ELEMENTS OF PROTOCOL MESSAGES ..46

8.1. Names..46

8.2. Registration identifiers...46
8.3. Message identifiers ..46
8.4. Property and event matching ...46

9. IMPLEMENTATION OF THE PROTOCOL...48

9.1. Layout of messages..48
9.1.1. Message header..48
9.1.2. Message data..48
9.1.3. Examples of arrays...48

9.2. Component descriptor routine ...50

10. COMPONENT IMPLEMENTATION TECHNIQUES..52

10.1 Common implementation interfaces for Microsoft Windows...52
10.1.1. Interface for simulation design and construction...52
10.1.2. Component wrapper DLLs...53
10.1.3. Distributing the Simulation over more than one machine..54

10.2 Note on system implementations ..56

11. REFERENCES..57

APPENDIX: DIMENSIONS AND SI UNITS...58

Common Modelling Protocol – 1–

1. Introduction

The purpose of this document is to specify a modelling protocol, a modular framework that enables the sub-
components of simulation models to be interchanged between different modelling software.

Simulation modelling in agriculture and resource management has now been under way for over 30 years
(Brouwer & de Wit 1968; Freer et al. 1970). Very early in that history, the desirability of generic simulation
tools was recognized (e.g. Beek & Frissel. 1973). Over time the following attributes have been recognized as
desirable in a generic agricultural simulation tool:

Hierarchical Ecological and hence agronomic systems are medium-number systems. They contain too many
entities to be treated as small-number systems that can be solved by differential-equation
techniques; and they have too few entities to be treated as large-number systems that are amenable
to treatment as statistical assemblages.

Current ecological theory suggests that the best way to analyze this kind of complexity is to take
advantage of organization in these systems that arises from differences in the rates of different
processes. This organization leads naturally to representations of reality that are hierarchically
structured (O'Neill et al. 1986).

Modular Similar considerations lead to the separation of closely-interacting parts of a model system into
discrete entities in the model code. Modularization has practical benefits, especially in allowing
scientists in research teams to specialise in modelling one part of the larger system (McCown et al.
1996).

Configurable Once a simulation model is decomposed into sub-models, it becomes natural to arrange the sub-
models in different configurations to reflect a range of different real-world situations (McCown et
al. 1996).

Interchangeable Modular construction also permits the substitution of one representation of a process by another,
depending on the needs of the modeller. This can be useful in comparing different representations
of a process, or in configuring a simulation for efficient execution.

Interchangeability applies not only to sub-models, but also to modelling software. Ideally it should
be possible to use the software implementing a model in conjunction with a range of different user
interfaces for different purposes (e.g. Donnelly et al. 1997).

Mixed discrete
& continuous

Many processes in agricultural systems are fundamentally continuous in nature. Others,
particularly management interventions, involve sharp changes in the state of the system. Event-
based representations of management have a long pedigree (e.g. Christian et al. 1978).

The protocol described in this document is intended to support the construction of simulation tools that meet
these criteria.

This document describes version 1.0 of the modelling protocol.

Common Modelling Protocol – 2–

1.1. Formal definition of a simulation 1

Before defining a modeling protocol, it is important to define the kind of models - "simulation" models - that it is
intended to support.

• A simulation is a computation of a dynamic model between given start and end times, i.e. it is an
integration over time.

• A dynamic model is defined by a set of equations. The equations of a dynamic model may fall into natural
groupings known as submodels. Some of these submodels may have equations and quantities of identical
form, i.e. they belong to the same submodel class. The dynamic model as a whole can therefore be viewed
as a collection of instances of various submodel classes.

• A submodel is composed of a set of quantities, a set of rate equations, and a set of events.

• All quantities can be expressed as real numbers, integers, or Boolean values. Real-valued quantities have
dimension and units; the units must conform to the dimension. I identify different kinds of quantities:
(a) Constants are quantities that are (i) invariant in time and (ii) have the same value in all instances of a

submodel within a model and all simulations of a model.
(b) Parameters are quantities that are invariant in time, but may take different values between different

instances of a submodel within a model or between simulations of a model.
(c) State variables are quantities that may vary in time as the simulation is computed. The value of a state

variable must be stored in order to compute the dynamics of the submodel. As a result, the initial value
of each state variable must be specified in order for the simulation to be computed. There is a one-to-
one correspondence between state variables and the rate equations of the submodel. In principle, there
should be no redundancy in the state variables.

(d) Summary variables may also vary in time, but their value at any given time may be determined from
the current values of the state and driving variables. They may be used to provide output from the
simulation; to provide driving variables for other submodels; or as notational conveniences in the
specification of the submodel's rate equations (in which case I refer to them as "intermediate"
variables).

(e) Driving variables are quantities which are stored externally to a given submodel but which must be
known in order to compute the dynamics of the submodel. They may (and usually do) vary in time.
Each driving variable must have a source, to which it is constrained to be equal at all times; a source
may be a constant, parameter, state or summary variable from another submodel, or it may be a quantity
external to the simulation. The set of submodel driving variables with external sources is the set of
driving variables for the model as a whole.

It should be noted that this terminology is not standardized; for example, "parameter" is used to mean (a),
(b) and (c) above.

• Each real-valued state variable has a rate equation associated with it. The rate equation is an ordinary
differential equation that gives the rate of change of that state variable over time. The right-hand side of
each rate equation must be composed only of constants, parameters, state variables, summary variables and
driving variables proper to the submodel.

• Each submodel has zero or more events2 associated with it. An event, in this sense, is
- a set of equations defining an instantaneous change in one or more state variables; and
- a "trigger": a logical relation that, if satisfied at any time, causes the change(s) in state variables.
Each event has zero or more quantities, known as event parameters, that may be used in specifying the
right hand sides of the equations and the trigger along with constants, parameters, state variables, summary
variables and driving variables proper to the submodel.

• A simulation is therefore completely defined by:
- the model, i.e. the set of submodels it contains;
- the start and end times for the computation;

1 No consistent terminology exists within the discipline of simulation modelling. The definitions made here

are in relatively common use.
2 The term "event" is used in another sense within the modelling protocol. Model events will be represented

by protocol events, but so will other parts of the computation. Unfortunately no good alternative term exists.

Common Modelling Protocol – 3–

- the values of the state variables and event parameters of each submodel at the start time;
- the time course of the model's driving variables.

1.2. Roles involved in defining and using simulatio ns

Simulation
user

Uses a pre-configured dynamic model to execute simulations. The user specifies the data to be
used during the simulation (e.g. the start and end times for the simulation, descriptions of soils,
management rules, etc.) and interprets outputs.

Modeller Configures sub-models to make a dynamic model. Verifies that the dynamic model is complete and
scientifically meaningful. The modeller and simulation user may be the same person at the same
time.

Component
builder

Implements the quantities, rate equations and events of a submodel as a component (see section
2), using the methods provided by the protocol to communicate with the rest of a simulation.

Protocol
implementer

Implements a version of the protocol for a particular operating system.

Common Modelling Protocol – 4–

2. Definition of entities within the protocol

2.1 Components

A component is the entity within the protocol that encapsulates a submodel. The interface of a component is
made up of:
• a name. When a component belongs to a system, the simulation can refer to it by a fully qualified name that

includes that of it's parent system.
• a unique ID, used to denote the component in messages.
• properties (as defined below).
• event handlers (as defined below).

2.2 Properties

Properties encapsulate the quantities of each submodel. The interface of a property includes:
• a name.
• an ID, used to denote the property in messages. ID values for properties are unique within components so

that the pair (component ID, property ID) uniquely identifies a property within the simulation.
• a type. The type of a property determines the set of values it may take and the units of those values, where

applicable. The type must be either one of a set of primitive types (see Figure 2.1 and section 6.1) or else
an array or record structure ultimately composed of these primitive data types.

• a value.

Two distinct kinds of properties are identified. Driving properties encapsulate driving variables, i.e. quantities
which are stored externally to a given component but which must be known in order to compute the component's
logic. All other properties (i.e. those that are stored by the component) are owned properties.

Owned properties must have at least one of the following attributes:

Writeable Other components may request that the value of a writeable property be changed.

Readable Other components may request the value of a readable property, i.e. other components have read
access to these properties.

Driving properties may receive zero or more values from different components. A component determines
whether the number of values returned to it by the rest of the simulation is valid.

Driving property registrations follow the registration scheme that is used for events as outlined in the next
section.

Unqualified property names must be unique within the component to ensure there is no ambiguity. This implies
that a property may only be registered once.

Common Modelling Protocol – 5–

Component

+Name char[]
+ID integer

Owned Property

+IsReadable logical
+IsWriteable logical

Driving Property

-MinSources 0…∞
-MaxSources 0…∞

1

6-m

Property

+Name char[]
+ID integer
+Units char[]
+Value

*

Event

+Name char[]
+ID integer

Event Handler

Event Publisher

1

1

*

Type

+Name char[]

Primitive Type Defined Type

Boolean

Byte

Short Int

Integer

Long Int

Single

Double

Char

Unicode

array

record

Simulation

System

+Machine char[]

1 Manager

{Manager = null}

*

*

1

Figure 2.1. Class diagram describing the relationship between entities in the modelling environment

2.3 Events and event handlers

Events are used to signal the occurrence of activities (computations) and pass instructions between components.
Events have:
• a name.
• a type. All events must have a record type; consequently each parameter of the event takes a name.
• data containing the values of the event's parameters.

Event handlers in the protocol encapsulate component logic (i.e. all computations that alter the state variables
of the submodel encapsulated by the component). The interface of an event handler includes:
• a name.
• an ID, used to denote the event handler in messages. ID values for event handlers are unique within

components so that the pair (component ID, handler ID) uniquely identifies an event handler within the
simulation.

• a type. The type of an event handler is the same as the type of the data within the events that it handles.

Components may register event publishers in one of three ways:

Unqualified or partly-qualified name Events published will go to any event handler that matches the
name and type.

Fully-qualified name Events published by this handler will go to the unique event
handler that matches the name and type, assuming that it exists.

Unqualified name + integer component ID The component ID is read as a destination for events. Events
published will go to the unique event handler denoted by the
component and handler name, assuming that it exists and has a
matching type.

Common Modelling Protocol – 6–

• It is an error to give both a component ID and a qualified name.

• It is always permitted to register an event publisher with no matching event handler. If the sender wants to
ensure that the event is handled, it must request acknowledgement and count the complete messages as they
come back.

2.4 Systems and simulations

A system is a component that groups related components within a simulation. In addition to the usual attributes
of components, a system has:
• zero or more components within it who may be systems.

All components of a simulation are implemented on a single machine and in a single address space (except sub-
systems, for which this is optional).

Figure 2.2 An example of a typical structure containing systems and components

A simulation is the execution of a model within the protocol. A simulation is equivalent to its top-level system;
when its behaviour as a system is under consideration, it will be referred to as the simulation system.

Every component - except the simulation system - is a member of exactly one system. Systems are therefore
arranged in a hierarchy or tree, with the simulation system at the root. The system that contains a component
performs a number of tasks relating to that component; it is referred to as the system that manages the
component.

2.5 Messages

Messages are the means by which information and requests are passed between components and systems as a
simulation is computed. Messages are entities that can contain events; events are passed within messages. There
is a defined set of 30 messages, each of which has a specific set of data defined that compose the message (see
sect. 4). A component that receives a message may execute some of it's own internal logic (which may result in
the component sending further messages); or it may be required to send particular messages as a mandatory
response.

Messages that are sent from components are firstly received by the owning system. This system is then
responsible to route the message to its owner or one of the other child components.

Sections 3 and 4 of this document describe the set of messages and the way that components use messages to
carry out all the tasks necessary to execute a simulation successfully.

System

System Component Component

Component

Machine
boundary

Component

Common Modelling Protocol – 7–

3. Tasks performed using the protocol

In order to support the execution of dynamic models, the protocol must carry out the following set of tasks:

1. Initialisation of a simulation
2. Termination of a simulation
3. Computation of a time step
4. Transmission of current values of a driving property
5. Changing the value of another component's owned property
6. Transmission of an event
7. Transmission of an error message
8. Recording the current model state (“checkpointing”)
9. Registration by a component of a property or event.
10. Removal by a component of a property or event registration
11. Addition of a component to a system
12. Removal of a component from a system
13. Deactivation of a component within a system
14. Activation of a component within a system
15. Obtaining information about components, properties or events

Each task is carried out by means of a sequence of messages between components and/or protocol managers.
Sequence diagrams for each task are given in sections 3.1-3.10. The contents of the messages are set out in
section 4 of this specification.

Common Modelling Protocol – 8–

3.1. Initialisation of a simulation

Protocol implementations will support three different sources for initialisation information:
(a) the simulation user via an interface;
(b) the component itself, i.e. default values may be used; and
(c) other components in the simulation.

To support this, two distinct stages are employed in the initialisation process. A single-stage process is not
feasible because of the need to allow initialisation information to be taken from other components

The constructor for a component includes the parameters; ID and Parent ID. This information is needed at
construction time so that the init1 message can be directed correctly.

1. The newly created system starts by
passing one requestComponentID
message for every sub-component to the
simulation system.
2. The simulation system responds with
returnComponentID messages, bearing
unique component IDs.
3. On receipt of these, the system creates
its sub-components (with ID) and then
sends init1 messages containing SSDL.
4. The sub-components respond by:
(i) carrying out any initialisation logic
that does not require information from
other components (this may include
creating sub-components and sending
init1 to them); and
(ii) registering properties and events.
5. The system must require
acknowledgement of init1.

6. Once all the init1 messages are
acknowledged simulation-wide…

7. init2 messages are sent recursively
through the simulation.

8. When processing init2, components
may request information from other
components.
9. The system must require
acknowledgement of init2.

10. Once the simulation system receives
acknowledgement of all its init2
messages, it sends a commence message
to the sequencer service.

Initialisation

 Sequencer

System

Component

«create»

requestComponentID

Simulation
System

returnComponentID
mponent «create»

*[all}:ini
t1

*[all]:register

complete(init1)

all init1's
complete?

complete(init1)

all init1's
complete?

init2

*[all}:ini
t2

complete(init2)

all init2's
complete?

complete(init2)

commence

*[all}:init1

all init2's
complete?

*[all]:register

Common Modelling Protocol – 9–

Notes:

• This sequence diagram describes the initialisation of a system directly contained within the simulation
system. The initialisation process operates recursively across the tree of systems that forms the whole
simulation. The diagram also assumes that control of time-step execution has been delegated to a
"sequencer" component.

• The simulation system (top-level system) must be created before the initialisation process can be initiated.

• All user-provided initialisation information is provided to a component in a single message as fragment of
SDML. The fragment must conform with the <component> element in the SDML definition set out in
section 7.1.

• A sequencer component is guaranteed to be ready to receive the commence message. In the absence of a
sequencer, the simulation system must submit the commence message to itself.

• A component must know its ID before a message can be routed to it. Components are therefore passed their
ID values as part of the creation process, not via a message.

• Component IDs must be unique throughout the simulation, so that the destination of every message
acknowledgement is unambiguous. The simulation system is therefore given the responsibility of allocating
IDs for all components.

• After components register their published events and driving variables, their owning system will, during
init2, need to do queryInfo messages to find all the connections for the published events and driving
properties.

• During init1: Components may carry out initialisation logic that does not require information from other
components. Properties and events can be registered.

• During init2: Components may request information or set values of other components during this stage.
During init1 and init2 the date and time of the simulation is unknown and therefore any computations or
other tests requiring the value of “current time” or “current time step” cannot be performed. Date and time is
known during the first time step of the simulation.

Messages used:

requestComponentID returnComponentID init1 init2
register commence complete

Common Modelling Protocol – 10–

3.2. Termination of a simulation

1. Any component initiates termination

by issuing terminateSimulation to
the simulation system.

2. The terminateSimulation message is
passed back to the simulation system.

3. It sends a notifyTermination message
to all its components.

4. Components respond to
notifyTermination by performing any
final processing.

5. Systems must also send
notifyTermination to the components
that they manage.

6. On acknowledgement of each
notifyTermination message, the
system destroys the acknowledging
component.

7. Systems only acknowledge

notifyTermination once all their sub-
components have been deleted.

8. At the end of the process, the

simulation system remains without
any components.

Termination

System Component

terminateSimulation

all destroyed?

Simulation
System

*[all comps]:notifyTermination

*[all comps]:notifyTermination

complete(notifyTermination)

terminateSimulation

«destroy»

all destroyed?

complete(notifyTermination)

«destroy»

Notes:

• Termination of a simulation is similar to a series of component deletions. However when a simulation is
being terminated, the pause messages used in component deletion might be left without a destination and so
not be acknowledged. Termination is therefore described as a distinct use case.

Messages used:

terminateSimulation notifyTermination complete

Common Modelling Protocol – 11–

3.3. Computation of a time step

Every simulation must have a component that provides the sequencing service. This sequencer component
registers a set of event publishers (the sequenced events) that instruct other components to carry out the
computations that together constitute the integration of the simulation over a time step.

The sequenced events are ordered, in the sense that each given sequenced event is always sent before, parallel
with, or after each other sequenced event as a timestep is computed.

The Execute Phases task is an endless loop that is started in response to a commence message. An iteration of
the loop will typically correspond to a time step.

1. The sequencer publishes the

first event(s) in the execution
order, in this case “foo” and
“bar”. They are routed to all
components that have
subscribed to that event.

2. The sequencer must request
acknowledgement.

3. When all acknowledgements

have arrived, the next set of
parallel events is sent out.

4. When all events in the list have

been completed, the sequencer
returns to the head of the list
and repeats.

Time Step

Simulation
System

Component
2

publishEvent(bar)
event(bar)

complete(event)

Sequencer Component
1

event(bar)

complete(publishEvent)

complete(event)

all bar complete?

publishEvent(foo2)

Component
3

publishEvent(foo)

complete(event)

event(foo)

all foo complete?complete(publishEvent)

all published events
complete?

Messages used:

publishEvent event complete

As an example of how this scheme works, consider the simulation on
the right. In this simulation, the sequencer will publish a total of four
events each time step, in three ordered groups:

(a) “startup” to Weather and Pasture;
(b) “intercept” to Soil Water, at the same time as

“green” to Pasture;
(c) “execute” to Soil Water and Pasture.

The sequencer service has no interaction with the Cashbook
component.

 Weather
startup

Pasture
startup, green, execute

Soil Water
intercept, execute

Sequencer
 [startup
 < intercept = green
 < execute]

Cashbook

Common Modelling Protocol – 12–

3.4. Transmission of driving property values

The driving properties of a component are those for which a value or values are obtained from another
component. The protocol supports cases where zero, one or more than one values for a driving property are
returned.

1. The requesting component issues
getValue to its system.

2. The system managing the component
identifies the source(s) for the driving
variable and sends queryValue to
each source.

3. Each source directs a replyValue
message to the requesting component.

4. The system must acknowledge the
getValue message, but only after all
returnValue messages have been
sent.

Get Driving Property Value

System Source
Component 2

getValue
queryValue

replyValue

Component Source
Component 1

queryValue

returnValue

returnValue
replyValue

complete(getValue)
all complete

Notes:

• The above sequence shows the minimal behaviour required. The returnValue message(s) may be sent to
other components that use the property as a driver.

• When the number of sources found by the system is out of the valid range for the property, the component
must generate a fatal error.

• The arrival of a queryValue message for a property that is not readable causes a fatal error.
• When the source and destination components reside in different systems, the queryValue and replyValue

messages are passed along the path of systems between the two managing systems. Because systems are
nested, this path is unique.

Messages used:

getValue queryValue replyValue returnValue complete

Example:

Consider two components in the same system. Comp1 has a driving property x, and Comp2 owns a property x.
Comp1, Comp2 and the two x properties each have a registration ID. The protocol manager that lives within the
system has worked out that Comp2.x acts as the only source for Comp1.x. Internally, Comp1.x is denoted by
the pair (98,4) and Comp2.x by (99,33).

System = 97

Comp1 = 98

Drivers: Owned:
x = 4 a = 1
z = 5 b = 2

c = 3

Comp2 = 99

Drivers: Owned:
e = 11 x = 33
g = 22 y = 44

z = 55

Figure 3.1. Example for getting driving property values

Common Modelling Protocol – 13–

(a) When Comp1 issues a request for the value of x, it sends From=98 To=97
getValue(id=4)

(b) System receives this. It holds the driver-source
relationship and so responds by sending

From=97 To=99
queryValue(id=33,
 requestedby=98)

(c) Comp2 receives this. It then addresses its answer to the
system that made the queryValue request.

From=99 To=97
replyValue(queryid=msg ID of queryValue,
 type="<type kind=string/>",
 value="quick brown fox")

(d) System receives replyValue. It looks up the (previously
stored) destination component and registration ID using
the queryid field and sends returnValue message to
Comp1.

From=97 To=98
returnValue(compid=99,
 id=4,
 type="<type kind=string/>",
 value="quick brown fox")

(e) Comp1 receives this and can tell from id which driving
property to assign the value to.

Common Modelling Protocol – 14–

3.5. Changing another component's owned property

No component may directly change the value of another component's owned property. As a result the “writing”
of owned property values must be implemented as a “request to change” that may be rejected by the receiving
component.

1. A requestSetValue message

containing a previously registered ID
is sent to the managing system.

2. The system identifies the component
that owns the property to be altered
and sends a querySetValue message
to it.

3. The owning component responds with
a replySetValueSuccess message.

4. The system converts this to a
notifySetValueSuccess message
informing the original sender whether
the operation succeeded.

1. A requestSetValue message

containing a previously registered ID
is sent to the managing system.

2. The system responds with a
notifySetValueSuccess message
informing the sender that the property
is not present.

Alter Owned Property

(a) The property is present in the simulation

 System

requestSetValue

replySetValueSuccess

Requesting
Component

Owning
Component

querySetValue

notifySetValueSuccess

(b) The property is not present in the simulation

 System

requestSetValue

Requesting
Component

notifySetValueSuccess

Messages used:

requestSetValue querySetValue replySetValueSuccess notifySetValueSuccess

Notes:

• If the name corresponding to the registration ID passed in the requestSetValue message is ambiguous, or if
the property that it denotes is not writeable, the receiving system must generate a fatal error.

Common Modelling Protocol – 15–

3.6. Transmission of an event

1. A component sends a publishEvent
message to its system. The system's
PM sends event messages to all
components that have subscribed to
the event.

2. Acknowledgement is, in general,
optional; if requested, it is routed in
the usual way.

3. The publishEvent message is only
acknowledged once the event
messages have been acknowledged.

Transmit Event

System Subscribing
Component 2

publishEvent
event

complete(event)

Component Subscribing
Component 1

event

complete(publishEvent)

complete(event)

all complete

Messages used:

publishEvent event complete

Common Modelling Protocol – 16–

3.7. Transmission of an error message

Errors are sent using a distinct message. This allows for the error to be transferred at any time during the
simulation construction or processing.

There are two use cases: one for a non-fatal (warning) error, and the other for a fatal error.

1. Upon receipt of a fatal error the

simulation system must request
termination of the simulation. See
section 3.2 Termination of a
simulation.

Errors
(a) Non-fatal error

(b) Fatal error

Messages used:

error notifyTerminate

Common Modelling Protocol – 17–

3.8. Recording and restoring the model state

3.8.1. Recording the model state

The process of recording the current state of a simulation, or part of a simulation, at some point during its
execution is referred to as checkpointing. SDML fragments or scripts are used to record the current state of a
component so they can be used to initialise the same component in another simulation.

Any component or system component may be checkpointed, including the simulation. Before a checkpoint is
recorded, the simulation must be paused to ensure that the states of all checkpointed components are consistent.
The checkpoint process involves using the sequence described in section 3.4. The getValue message is used to
retrieve the standard state property of the component or the system that is being checkpointed. Since the
definition for a state variable specifies that it includes any state information from child components, the system
being checkpointed must have a special handler for queryValue(state) messages.

Checkpointing using the
getValue message.

Once the simulation has
been paused, the
checkpointer uses a
registered driving variable
for the state property of the
system being checkpointed.
Then it issues a getValue
for the state driver.

The getValue is
passed to the parent of
the checkpointer.

The checkpointed system
uses driving variables for all
it’s child components to
retrieve the state values of
the children.

As each driver is returned
the state value is
constructed.

The state value is returned
to the checkpointer and
the simulation is resumed.

Checkpointer SystemToCheckpoint

Checkpointing

getValue(state)

pauseSimulation

complete(pauseSimulation)

OwningSystem

*each[child component]:registerStateDriver()

*each[child component]:getValue(state)

Object1
Component

queryValue(state)

replyValue(state)

all returned
returnValue(state)

complete

resumeSimulation

returnValue(state)

complete

OwningSystem

queryValue(state)

all returned

replyValue(state)

Messages used:

pauseSimulation getValue replyValue complete

resumeSimulation queryValue returnValue

Notes:

• The SDML fragment returned by each component as the value of the state property must be a valid
<component> or <system> element in SDML as described in section 7 of this document. i.e. be capable
of initializing the component.

• The driving variables used during the checkpoint process must be registered if they have not already been
registered.

Common Modelling Protocol – 18–

3.8.2. Restoring the model state

The process of restoring, or reinstating, the state of all or part of a simulation is carried out as the converse of the
checkpointing process.

The process used to restore the state property is described in section 3.5 Changing another component's owned
property. The SDML however can be used as the initialisation for the component in a new simulation script.

Since the definition for a state variable specifies that it includes any state information from child components,
the system being restored needs to have a special handler for querySetValue(state) messages.

Restoring a checkpoint

The component pauses the
simulation.

The component uses a
registered property setter
variable to send the state
SDML to the system that
was checkpointed.

The system component
being restored may need to
register property setters for
it’s children.

When the
notifySetValueSuccess
message returns, the
component sends a resume
message.

OwningSystemComponent SystemCheckpointed

Reinstate Checkpoint

requestSetValue(state)

pauseSimulation

complete(pauseSimulation)

OwningSystem

*each[child component]:requestSetValue(state)

Object1
Component

querySetValue(state)

replySetValueSuccess

notifySetValueSuccess

resumeSimulation

*each[child]:registerPropertySet()

querySetValue(state)

all returned

replySetValueSuccess

notifySetValueSuccess

Messages used:

pauseSimulation requestSetValue replySetValueSuccess complete

resumeSimulation querySetValue notifySetValueSuccess

Notes:

1. If the structure of the sub system being restored is found to be different to the structure that was
checkpointed, then a fatal error will be issued.

Common Modelling Protocol – 19–

3.9. Changing the model structure

3.9.1. Registration of a property or event

1. The requesting component sends a

register message to its system.

1. After simulation construction, the

system also sends a
notifyRegistrationChange message
to its parent system and to any sub-
systems that it manages. This message
propagates through the simulation.

Register Property or Event

(a) During simulation construction

 System

register

Component

(b) After simulation construction

System Sub-System

register

Managing
System

Component

notifyRegistrationChange notifyRegistrationChange
notifyRegistrationChange

Sub-System

Messages used:

register notifyRegistrationChange

Notes:

• notifyRegistrationChange messages are propagated to every system in the simulation. This enables each
system to keep track of the properties and event handlers to which it may need to route queryValue,
requestSetValue and event messages.

Common Modelling Protocol – 20–

3.9.2. Deregistration of a property or event

1. The requesting component sends a

deregister message to its system.
2. The system records the deregistration.
3. It also sends a notifyRegistrationChange

message to its parent system and to any
sub-systems that it manages.

Deregister Property or Event

 System Sub-System

deregister

Managing
System

Component

notifyRegistrationChange notifyRegistrationChange

Messages used:

deregister notifyRegistrationChange

Common Modelling Protocol – 21–

3.9.3. Adding a component to a system

1. The system receiving addComponent passes a

requestComponentID message back to the
simulation system.

2. The simulation system replies with a
returnComponentID message bearing a unique
component ID.

3. On receipt of these, the system creates the new
component (with ID) and then sends it an init1
message containing SSDL.

4. The new component responds by:
(i) carrying out any initialisation logic that does

not require information from other components;
and

(ii) registering properties and events.
5. Component addition will normally take place

after simulation construction, so
notifyRegistrationChange messages are sent
as part of registering each property and event.

6. The system requires acknowledgement of init1.
7. Once the init1 message is acknowledged, the

system sends an init2 message.
8. The system requires acknowledgement of init2.

Add Component

 System

Component

requestComponentID

Simulation
System

returnComponentID

«create»

init1

*[all]:register

complete(init1)

init2

complete(init2)

addComponent

Sub-System

*notifyRegistration
Change *notifyRegistrationChange

Messages used:

addComponent requestComponentID returnComponentID init1
init2 register notifyRegistrationChange complete

Notes:

• Addition of a single component to a simulation bears similarities to the initialisation process. The main point
of difference is that the init2 message is sent immediately on receipt of the acknowledgement that init1 has
been processed; in the initialisation process, the init2 cannot be issued until all the other components in the
simulation have completed their first initialisation stage as well.

• Attempting to add a component to a component that is not a system causes a fatal error.

Common Modelling Protocol – 22–

3.9.4. Removing a component from a system

1. The system owning the component to

be deleted receives the message.

2. A pauseSimulation message is sent;

acknowledgement must be requested.
3. Once the simulation is known to be

paused, the system sends a
notifyAboutToDelete message to the
component. Acknowledgement is
mandatory.

4. It responds by carrying out any
cleanup logic & acknowledging.

5. The system then invalidates all
registrations from the component.
notifyRegistrationChange messages
will be triggered.

6. Once the system has finished the
deregistrsation, it deletes the
component from memory.

7. The simulation is resumed.

Delete Component

System

deleteComponent

Sequencer Component

complete(pauseSimulation)

pauseSimulation

«destroy»

resumeSimulation

*[all]:notifyRegistration
Change

notifyAboutToDelete

complete(
notifyAboutToDelete)

Messages used:

deleteComponent pauseSimulation resumeSimulation notifyAboutToDelete
complete

Notes:

• The notifyAboutToDelete message is required to force the component to execute any final logic. Because
this may involve communication with other components, it has to happen before deregistration.

Common Modelling Protocol – 23–

3.9.5. Deactivating a component

All components possess a standard Boolean property named active. When the component is active, this property
takes a value of TRUE. The Deactivate Component sequence diagram below describes the case where the
activity property is TRUE. If it is already FALSE, no changes to registrations will be made.

1. The deactivate message arrives at the

system managing the component (in
this case, the simulation system).

2. A pause message is propagated to the
sequencer; acknowledgement must be
requested.

3. Once the simulation is paused, the
system sets the active property of the
target component to FALSE.

4. Once this is complete, the system
invalidates all registrations from the
component, isolating it from the
simulation.
notifyRegistrationChange messages
will be triggered.

5. A resumeSimulation message is then
propagated to the sequencer service to
re-start the simulation. This time
acknowledgement is not required.

Deactivate Component

 Simulation
System

deactivateComponent

Sequencer Component

complete(
 pauseSimulation)

pauseSimulation

querySetValue(active,FALSE)

resumeSimulation

replySetValueSuccess

*[all]:notifyRegistrationChange

Messages used:

deactivateComponent pauseSimulation resumeSimulation requestSetValue
notifySetValueSuccess notifyRegistrationChange complete

3.9.6. Activating a component

The Activate a Component sequence diagram describes the case where an activate message arrives at a
component that has its active property set to FALSE. If it is already TRUE, no registration messages will be
issued by the target component.

1. The activate message arrives at the

system owning the component.
2. It sets the target component's active

property to TRUE.

3. The component re-registers all the

properties and events that were
deregistered when it was deactivated.
notifyRegistrationChange
messages will be triggered.

Activate Component

 System Component

*[all]:register

activateComponent
querySetValue(active,TRUE)

replySetValueSuccess

*[all]:notifyRegistration
Change

Messages used:

activateComponent requestSetValue notifySetValueSuccess register
notifyRegistrationChange

Common Modelling Protocol – 24–

3.10 Obtaining information about properties, compon ents or events

This sequence diagram shows the flow of messages when information about a property or event (say "x") is
enquired for in a simulation with the following structure:

 (has x)
Simulation System

System1 Comp6 (has x)

Comp1 System2

Comp2
Comp4 (has x)

Comp7

Comp3 (has x)
Comp5

Comp8 (has x)

1. The requesting component sends a

queryInfo message to its system.
2. The system provides information

about any matching entities using
returnInfo…

3. and propagates the query to the system
that manages it and any sub-systems.

4. These systems recurse the process.

5. Note how the simulation system

responds with one message per
matching entity.

Messages used:

queryInfo returnInfo

Notes:

1. When a child system receives a queryInfo it will not send it back to the parent that sent it.

Common Modelling Protocol – 25–

4. Protocol Messages

4.1. Summary of protocol messages

The following is the table of valid message types:

MsgType Message Name Sent by Received by Acknowledge
Completion

1 activateComponent Component System managing component Optional
2 addComponent Component System Optional
3 error Component System managing component Optional
4 commence Simulation system Simulation system (sequencer) Optional
5 complete Component Component Never
6 deactivateComponent Component System managing component Optional
7 deleteComponent Component System managing component Optional
8 deregister Component System managing component Optional
9 event Component Component Optional
10 getValue Component System managing component Mandatory
11 init1 System Component managed by system Mandatory
12 init2 System Component managed by system Mandatory
13 notifyAboutToDelete System Component managed by system Mandatory
14 notifyRegistrationChange System Systems Optional
15 notifySetValueSuccess System Component managed by system Optional
16 notifyTermination Simulation system,

system
System, component Mandatory

17 pauseSimulation Component Simulation system (sequencer) Optional3
18 publishEvent Component System managing component Optional
19 queryInfo Component System Mandatory
20 querySetValue System Component Futile
21 queryValue System Component Futile
22 register Component System managing component Optional
23 not used
24 replySetValueSuccess Component System Optional
25 replyValue Component System Optional
26 requestComponentID System Simulation system Futile
27 requestSetValue Component Component Futile
28 resumeSimulation Component Simulation system (sequencer) Optional
29 returnComponentID Simulation system Component Optional
30 returnInfo System Component Optional
31 returnValue System Component managed by system Optional
32 terminateSimulation Component Simulation system Never

Notes:

• Anything sent by a component can be sent by a system.

• Acknowledgement of a message is "futile" when a component is required to respond to it by replying with a
different message. For example, the queryInfo message must generate a returnInfo message in reply, so
acknowledging this message is redundant.

• "(sequencer)" denotes that the simulation system is responsible for sending or handling a message but that
this responsibility will usually be delegated to a sequencer service.

• Integer message fields are all 4 bytes in length.

3 In some of the tasks discussed in section 3, completion of pause messages must be acknowledged.

Common Modelling Protocol – 26–

4.2. Protocol messages in detail

This section contains a description of each protocol message, setting out:
• the characteristic structure for its message data component;
• which entities send the message and under what conditions it is sent;
• which entities receive the message and the response, if any, required of them.

Where a response is not otherwise specified, a system that receives a message must route it toward its
destination. In this case the "From" field of the message must be preserved, so that when the message arrives at
its destination the "From" field gives the original sender of the message.

Name: activateComponent
MsgType: 1
Summary: Reverses de-activation of a component (see the deactivateComponent message).
Message data: component char[] Unqualified name of the component to be activated. Refer to sect.

2.1

Sent by: Components.
Sent when: At any time.
Received by: System managing a component.
On receipt: The receiving system must set the nominated component’s active property to TRUE using the

Alter Owned Property sequence diagram set out in section 3.5. If the nominated component was
previously inactive, it must respond by re-registering its properties and event handlers.

Name: addComponent
MsgType: 2
Summary: Adds a new component to the system managed by the receiving system.
Message data: sdml char[] A SDML fragment containing initialisation information for the

new component. The fragment must conform to either the
<component> or <system> element in SDML (see section 7.1).

Sent by: Components.
Sent when: At any time.
Received by: Any system.
On receipt: The receiving system must respond by sending a requestComponentID message to the system

that manages it (to itself if it is the simulation system). Sect. 3.9.3

Name: error
MsgType: 3
Summary: Transmits error information to the Simulation System.
Message data: fatal

message

boolean

char[]

True if the error was fatal and the simulation must be terminated.

Text containing the error details.

Sent by: Components.
Sent when: At any time.
Received by: Any system.
On receipt: If the receiving system is not the Simulation System, the message must be resent to it’s owning

system. The Simulation System is responsible for terminating the simulation if the value of fatal is
True.

Common Modelling Protocol – 27–

Name: commence
MsgType: 4
Summary: Requests the commencement of the first time step.
Message data: (None)

Sent by: Simulation system
Sent when: During initialisation, once all init2 messages sent by the simulation system have been

acknowledged.
Received by: Component that implements the sequencer service (may be the simulation system).
On receipt: The component must begin to execute the Execute Phases sequence diagram set out in section 3.3.

Name: complete
MsgType: 5
Summary: Informs the receiving component that a message it sent earlier has been processed.
Message data: ack-id integer Message ID of the message being acknowledged (section 9.1.1)

Sent by: Components and systems
Sent when: Whenever an entity receives a message with the acknowledgement flag set, it must respond by

submitting a corresponding complete message once it has completed processing of the original
message.

Received by: Any component or system
On receipt: The response depends on the type of the message being acknowledged and whether the message is

received by the simulation system, another system or a component:
 Message acknowledged Received

by
Response
required

 init1 Simulation
system

If this is the last init1 message acknowledged, then
init2 is sent to all components managed by the
simulation system.

 Other system If this is the last init1 message acknowledged, then the
init1 message from the system that manages this
system is acknowledged.

 init2 Simulation
system

If this is the last init2 message acknowledged, then
commence is sent (either to the simulation system or
the sequencer service).

 Other system If this is the last init2 message acknowledged, then the
init2 message from the system that manages this
system is acknowledged.

 notifyTermination All systems (a) The component that sent the acknowledgement is
deleted.

(b) If this is the last notifyTermination message
acknowledged, then the notifyTermination
message from the system that manages this system
is acknowledged.

 getValue Component Signals to the component that all values have been
returned in response to the query. The response is
handled internally by the receiving component.

 Other messages Component Handled internally by the receiving component

Common Modelling Protocol – 28–

Name: deactivateComponent
MsgType: 6
Summary: Deactivates a component
Message data: component char[] Unqualified name of the component to be deactivated

Sent by: Components.
Sent when: At any time.
Received by: System managing a component.
On receipt: The receiving system must set the nominated component’s active property to FALSE using the

Alter Owned Property sequence diagram set out in section 3.5. The system must then invalidate
any registrations of that component’s properties and event handlers and send out
notifyRegistrationChange messages to inform the rest of the simulation that it has done so.

Name: deleteComponent
MsgType: 7
Summary: Informs the receiving system that it is to initiate removal of one of the components it manages.
Message data: component char[] Name of the component to be deleted

Sent by: Component.
Sent when: At any time.
Received by: Any system managing a component.
On receipt: The receiving system must respond by sending a pauseSimulation message; once this is

acknowledged, it must send notifyAboutToDelete to the component to be deleted.

Name: deregister
MsgType: 8
Summary: Invalidates the registration of properties and/or events.
Message data: kind integer 1 denotes a driving property

2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
7 denotes a component
8 denotes a system component
9 denotes a property set request

 id integer Registration ID of the property or event to be deregistered. This
field should be 0 if the kind field denotes a component or system.

Sent by: Component.
Sent when: At any time.
Received by: System managing the sending component.
On receipt: The receiving system invalidates the registration of the given property or event. If the kind field is

7 or 8, all property and event registrations for the component or system are invalidated.
The receiving system must also send a notifyRegistrationChange message to
(i) the system that manages it, if any, and
(ii) any sub-system that it manages (including the component that sent the deregister message, if

applicable).
notifyRegistrationChange messages are not sent if the deregistration happens while the receiving
system is engaged in processing an init1 message.

Common Modelling Protocol – 29–

Name: event
MsgType: 9
Summary: Notifies a component that subscribe to an event that the event has occurred.
Message data: id integer Registration ID of an event handler that subscribed to the event
 publishedBy integer ID of the component that sent the publishEvent message that

caused this event message to be created

 type char[] DDML <type> element describing the type of the parameter data.
The type of the parameters must be a record, so that each
parameter has a name.

 params variant Parameter data, laid out according to the type field.

Sent by: System or component
Sent when: (i) Sent when the system receives a publishEvent message from one of its components. One

publishEvent message may result in zero or more event messages being sent.
 The acknowledgement flag of an event message is only set if the triggering publishEvent

message has its acknowledgement flag set.
(ii) A component may send an event message to another component’s event handler at any time.

Received by: Any component.
On receipt: Handled according to the internal logic of the component.

Name: getValue
MsgType: 10
Summary: Passes request for a driving property value from a component to its system for routing
Message data: id integer Registration ID of the driving property of the requesting

component for which a value is requested.

Sent by: Components.
Sent when: At any time
Received by: System managing the sending component.
On receipt: The receiving system identifies all components that provide values for the driving property and

sends a queryValue message to each.
Acknowledgement of the getValue message must be requested. The receiving system waits until it
has routed all the corresponding returnValue messages to the component before sending the
complete message. The acknowledgement thus signals to the component that all values have
arrived in cases where a variable number of values may be returned.

Common Modelling Protocol – 30–

Name: init1
MsgType: 11
Summary: Instructs a component to carry out the first part of its initialisation.
Message data: sdml char[] SDML <component> or <system> element containing

initialisation information provided by the simulation builder. See
section 7 for SDML.

 fqn char[] Fully-qualified name of the component being initialised

 inStartup boolean TRUE if the message is sent during simulation construction, i.e.
the processing of init1 messages as part of the initialisation of the
simulation. (At this time, other components cannot be guaranteed
to be in existence.)
FALSE otherwise, including when it is sent as part of adding a
component to the simulation.

Sent by: system managing a component.
Sent when: In response to a returnComponentID message, immediately after the system has created the

component.
Received by: Newly created component.
On receipt: The component carries out the first part of its initialisation, including processing of initialisation

information in the sdml field and registration of all properties and events. The component cannot
rely on any other component or property being present in the simulation while init1 is being
processed.

Name: init2
MsgType: 12
Summary: Instructs a component to carry out the second part of its initialisation.
Message data: (None)

Sent by: System managing a component.
Sent when: (a) During initialisation: if the system is the simulation system, when all init1 messages sent by the

system have been acknowledged; otherwise on receipt of an init2 message.
(b) During addition of a component: upon acknowledgement of the init1 message sent to the

component.
Received by: Component.
On receipt: The component carries out the second part of its initialisation, including obtaining initialisation

information from other components.

Name: notifyAboutToDelete
MsgType: 13
Summary: Informs a component that it is about to be deleted
Message data: (None)

Sent by: System managing component
Sent when: In response to deleteComponent, after the system has ensured that the simulation is paused.
Received by: Component
On receipt: On receipt of this message, the component must carry out any internal computation required before

it is deleted (e.g. closing files).
This message must always be acknowledged.

Common Modelling Protocol – 31–

Name: notifyRegistrationChange
MsgType: 14
Summary: Broadcasts a change in the registration of properties and events to the rest of the simulation.
Message data: registered boolean TRUE if a property or event has been registered; FALSE if

deregistered.
 kind integer 1 denotes a driving property

2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
7 denotes a component
8 denotes a system component
9 denotes a property set request

 ownerid integer Registration ID of the component that owns the property or event
(or the component itself if kind=7 or 8)

 id integer Registration ID of the property or event.
Should be zero if kind=7 or 8.

 name char[] Unqualified name of the entity that is the subject of the
notification.

 type char[] If the entity is a component:
Text string giving the value of the component's type property
(see section 5.1)

If the entity is a property or event:
DDML <type> element giving the type and units

Sent by: System
Sent when: In response to a register or deregister message, except during simulation construction, i.e. the

processing of init1 messages as part of the initialisation of the simulation. (At this time,
components cannot be guaranteed to be in existence.)

Received by: System managing the sender; also sub-systems managed by the sender
On receipt: The receiving system uses the contents of the message as necessary to restructure the routing of

queryValue and event messages.
The receiving system must also send a corresponding notifyRegistrationChange message to the
system that manages it and to all sub-systems it manages (excluding the sender of the original
message), thereby propagating the notification through the entire simulation.

Name: notifySetValueSuccess
MsgType: 15
Summary: Notifies the receiving component whether or not a previously sent requestSetValue message was

successful.
Message data: id integer Registration ID of the property for which an alteration was

requested (the component ID is in the From field of the message).
 success boolean TRUE only if the owning component changed the property value

as requested.

Sent by: Component.
Sent when: In response to a requestSetValue message.
Received by: Component that sent the requestSetValue message.
On receipt: Handled internally by the component.

Common Modelling Protocol – 32–

Name: notifyTermination
MsgType: 16
Summary: Informs a component that the simulation is about to be terminated
Message data: (None)

Sent by: System managing component
Sent when: The simulation system sends notifyTermination messages in response to terminateSimulation;

other systems send it in response to notifyTermination.
Received by: Component
On receipt: On receipt of this message, a component must:

(a) if a system, send a notifyTermination message to all components within the system, requiring
acknowledgement;

(b) carry out any internal computation required before the simulation is halted (e.g. closing files).
This message must always be acknowledged. If the component is a system, it must not
acknowledge the message until all its sub-components have acknowledged their
notifyTermination messages.

Name: pauseSimulation
MsgType: 17
Summary: Signals that submission of sequenced events should halt until a resumeSimulation message is

received.
Message data: (None)

Sent by: Any component.
Sent when: At any time. Must be sent in response to a deleteComponent message.
Received by: (a) Simulation system;

(b) Sequencing component.
On receipt: (a) The simulation system routes the pauseSimulation message to the component that provides the

sequencing service (if not itself).
(b) The component that provides the sequencing service responds by halting the sending of

sequenced events until such time as a resumeSimulation message is received.

Name: publishEvent
MsgType: 18
Summary: Passes an event notification from a component to its system for routing
Message data: id integer Registration ID of the event publisher
 type char[] DDML <type> element describing the type of the parameter data.

The type of the parameters must be a record, so that each
parameter has a name.

 params variant Parameter data, laid out according to the type field.

Sent by: Components.
Sent when: At any time
Received by: System managing the sending component.
On receipt: The receiving system identifies all components that have subscribed to the event and sends an

event message to each. If acknowledgement is required, the message is only acknowledged once
all the event messages triggered by the message have been acknowledged.

Common Modelling Protocol – 33–

Name: queryInfo
MsgType: 19
Summary: Broadcasts a request for information about a component, property or event handler.
Message data: name char[] Name of the component, property or event handler about which

information is requested. The name may be qualified (see section
8.1). A property or event name may be "*", which matches all
names ("component.*" is permitted).

 kind integer 1 denotes a driving property
2, 3 and 4 denote an owned property
5 denotes an event publisher
6 denotes an event handler
7 and 8 denote a component or system
9 denotes a property set request

Sent by: Component.
Sent when: At any time.
Received by: Systems.
On receipt: The receiving system checks entities of the nominated kind that are registered with it and sends a

returnInfo message to the originating component for each entity that matches name.
If the name field may match an entity outside the system, the receiving system must send a
corresponding queryInfo message to the system that manages it.
If the name field may match an entity within a sub-system managed by the receiving system
(excluding the sender of the message), it must send a corresponding queryInfo message to the sub-
system.
In this way the query is propagated through the simulation.

Name: querySetValue
MsgType: 20
Summary: Issues a request to set the value of another component’s writeable (owned) property.
Message data: id integer Registration ID of the owned property to be set within the

component to which the message is addressed.
 type char[] DDML <type> element giving the type of the value data
 value variant Value data, laid out in accordance with the type of the property

Sent by: System
Sent when: In response to a requestSetValue message.
Received by: Component.
On receipt: The receiving component must respond with a replySetValueSuccess message to inform the

sending system of the success or failure of the operation.

Name: queryValue
MsgType: 21
Summary: Requests the current value of another component's owned property.
Message data: id integer Registration ID of the owned property within the component to

which the message is addressed.
 requestedby integer Registration ID of the component that is requesting the value (i.e.

issued the original getValue message)

Sent by: System
Sent when: Sent when the system receives a getValue message from one of its components. One getValue

message may result in zero or more queryValue messages being sent from the owning system. It is
the responsibility of the sending system to ensure that all recipients own the nominated property.

Received by: Component.
On receipt: The component must send a replyValue message containing the requested value to the system that

sent the queryValue message (given by the message's from field).

Common Modelling Protocol – 34–

Name: register
MsgType: 22
Summary: Registers a property or event handler with the system
Message data: Kind integer 1 denotes a driving property

2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
9 denotes a property set request

 Id integer Identifier to be used in messages relating to the property or event
handler. All property IDs within the component must be unique, as
must all event handler IDs and property set request IDs.

 destID integer Optional integer ID for a destination component.

• If kind=1 or 9, identifies a component that owns a property
corresponding to the driving property or property set request
being registered. Value requests for the driving property must
be routed to the nominated component only.

• If kind=5, identifies a component that subscribes to the event
being published. When the event is published, it must be
routed to the nominated component only.

• If kind is 2, 3, 4 or 6, destID must be zero.

• If kind is 1,5,9 destID can equal 0 if the name is fully
qualified.

 Name char[] Name of the property or event handler. . If kind=1, 5 or 9 and
destID≠0, the name must be unqualified (if not, a fatal error
results.) In other cases the name must be fully qualified.

 Type char[] DDML <type> element giving the type and units of the property
or event handler

Sent by: Component.
Sent when: At any time. Sent as part of processing the init1 message.
Received by: System managing the component.
On receipt: The receiving system registers the property. It also sends notifyRegistrationChange messages as

detailed in the description of that message (except during simulation construction).
If a duplicate property or event is requested to be registered a non fatal error is generated and
registration is not done. Refer to section 2.2.

Name: replySetValueSuccess
MsgType: 24
Summary: Issued in response Notifies the receiving component whether or not a previously sent

requestSetValue message was successful.
Message data: requestID integer Message ID of the original querySetValue message
 success boolean TRUE i.f.f. the owning component changed the property value as

requested.

Sent by: Component.
Sent when: In response to a querySetValue message.
Received by: System that sent the querySetValue message.
On receipt: The receiving system must send a notifySetValueSuccess message to the component that

originally sent a requestSetValue message.

Common Modelling Protocol – 35–

Name: replyValue
MsgType: 25
Summary: Provides the value of a component's property to a managing system for sending to the requesting

component.
Message data: queryid integer Message ID of the queryValue message to which this message is

a response
 type char[] DDML <type> element describing the type of the value data
 value variant Value data, laid out in accordance with the type of the property.

Sent by: Component that owns a property.
Sent when: In response to a queryValue message
Received by: System
On receipt: When the managing system receives replyValue from a component, it sends (not routes) a

returnValue message to the component that originally requested the value. The from field of the
second message must contain the ID of the managing system. It may also send returnValue
messages to other components in its system that have registered the driving property.

Name: requestComponentID
MsgType: 26
Summary: Requests a component ID from the simulation system.
Message data: replyto integer Registration ID of the system that will manage the new component
 name char[] Qualified name of the component (see below)

Sent by: System
Sent when: As part of processing an addComponent or init1 message, before a component managed by the

system is created.
Received by: System managing the sending system. If the new component is to be managed by the simulation

system, the simulation system sends the message to itself.
On receipt: If the receiving system is not the simulation system:

it sends a requestComponentID to the system that manages it, with the name field further
qualified (e.g. if System1 receives System2.x, it sends System1.System2.x). This ensures that a
fully qualified name arrives at the simulation system.

If the receiving system is the simulation system:
it generates a unique component ID and sends a returnComponentID message to the system
given by the replyto field.

The replyto field has to be provided separately from the From field in the message header because
in a deeply nested simulation, the From field in the message arriving at the simulation system will
not contain the ID of the system that initiated the process.

Name: requestSetValue
MsgType: 27
Summary: Issues a request to set the value of another component’s writeable (owned) property.
Message data: id integer Registration ID denoting the property to be set within the sending

component.
 type char[] DDML <type> element giving the type of the value data
 value variant Value data, laid out in accordance with the type of the property

Sent by: Component.
Sent when: At any time.
Received by: Managing system.
On receipt: The receiving system must identify the component and property to which the id field corresponds.

Three cases are possible:
(a) Zero destinations: the system must send the requesting component a notifySetValueSuccess

message with success=true.
(b) One destination: the system must send a querySetValue message to the component that owns

the property to be altered.
(c) More than one destination: the system must issue a fatal error.

Common Modelling Protocol – 36–

Name: resumeSimulation
MsgType: 28
Summary: Signals that processing of sequenced messages may recommence.
Message data: (None)

Sent by: Any component.
Sent when: At any time. Must be sent in response to acknowledgement of a notifyAboutToDelete message.
Received by: (a) Simulation system;

(b) Sequencing component.
On receipt: (a) The simulation system routes the resumeSimulation message to the component that provides

the sequencing service (if not itself).
(b) The component that provides the sequencing service responds by re-commencing the sending of

sequenced events (assuming that they have been paused).

Name: returnComponentID
MsgType: 29
Summary: Provides a registration ID for a component that is about to be created.
Message data: fqn char[] Fully qualified name of the component
 id integer Registration ID of the component. The value of id must be non-

zero.

Sent by: Simulation system
Sent when: In response to a requestComponentID message.
Received by: System that will manage the component when it is created
On receipt: The receiving system must create the component and then send it an init1 message.

Name: returnInfo
MsgType: 30
Summary: Provides a component with information about an entity within the simulation.
Message data: queryid integer Message ID of the queryInfo message to which this message is a

response
 compid integer Component ID that owns the entity

 id integer Registration ID of the entity about which information is being
returned

 name char[] Fully-qualified name of the entity
 type char[] If the entity is a component:

Text string giving the value of the component's standard type
property (see section 5.1).

If the entity is a property or event:
DDML <type> element giving the type and units of the entity

 kind integer 1 denotes a driving property
2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
7 denotes a component
8 denotes a system component
9 denotes a property set request

Sent by: System
Sent when: In response to a queryInfo message
Received by: Component (not necessarily managed by the sending system)
On receipt: Handled internally by the receiving component

Common Modelling Protocol – 37–

Name: returnValue
MsgType: 31
Summary: Provides the value of a component's property to another component.
Message data: compid integer ID of the component that owns the property value that is being

returned in this message.
 id integer Registration ID of the property for which a value is being returned

(the value sent as id in the getValue message that is being
responded to).

 type char[] DDML <type> element describing the type of the value data
 Value variant Value data, laid out in accordance with the type of the property.

Sent by: System that manages the component that originally issued a getValue message requesting the

value of the property.
Sent when: In response to a replyValue message with a queryid field matching a previously dispatched

queryValue message.
Received by: Component.
On receipt: The component that originally requested the value handles returnValue messages according to its

internal logic.

Name: terminateSimulation
MsgType: 32
Summary: Initiates termination of the simulation.
Message data: (None)

Sent by: Any component.
Sent when: At any time.
Received by: Simulation system
On receipt: The simulation system is required to issue notifyTerminate messages to all components that it

manages, and to delete each component after its notifyTerminate message has been
acknowledged.

Common Modelling Protocol – 38–

5. Standard Properties and Events

There is a set of properties that every component must possess (R49-54). Also, the sequence diagrams in section
3 assume the existence of a number of certain properties and events. Hence there is a need in the protocol for a
set of "standard" properties and events.

5.1. Standard component properties

The set of standard properties is:

Name Type Readable Writeable Meaning
name char[] Yes No Fully-qualified name of the component

type char[] Yes No Name of the component class (component type)

version char[] Yes No Version of the component class

author char[] Yes No Author of the component class

active integer Yes No Zero denotes an active component; a positive value denotes the
number of activate messages required to make the component
active.

state char[] Yes Yes SDML <component> or <system> element describing the current
state of the component or sub system.

• All components must own each of these properties.

• The value of the name property is set during creation of a component (it is provided by the
returnComponentID message returned to its managing system).

• The values of the type, version, and author properties are determined by the <module> element of the
SDML provided to the component at initialisation. The initial value of the active property is set by the
"active" attribute of the <component> element.

5.2. Standard event handlers

The set of standard event handlers is:

Name Type Meaning
error fatal : boolean

message : char[]
Notifies the rest of the simulation of the occurrence of an error condition.

• The standard event is optional; however if a component publishes or subscribes to a standard event, it must
have the type and meaning set out above.

5.3. Time property

As noted in section 1, time has a special status in simulations of dynamic models. As with all numerical
integrations in time, computation of simulations is carried out using time intervals of finite length ("time steps").
Although time is inherently continuous, it is computationally more convenient if time is quantised.

These considerations are taken into account in the protocol via the standard time property. The following
conditions apply to time:
• no more than one component in a simulation may own the time property (the sequencer); and
• it must take the record type set out below.

Common Modelling Protocol – 39–

Field Type Meaning
startDay integer Day number of the start of the time step
startSec integer Seconds past midnight of the start of the time step (0-86399)
startSecPart double Fraction of a second of the start of the time step (0.0-1.0)
endDay integer Day number of the end of the time step
endSec integer Seconds past midnight of the end of the time step (0-86399)
endSecPart double Fraction of a second of the end of the time step (0.0-1.0)

Time steps are therefore represented in continuous terms, but time steps down to one second can be dealt with in
a discrete fashion. A day number denotes the day, from midnight to midnight, that contains the Julian Day
Number (as used by the astronomical community) with the same value. 9 October 1995 is day number 2450000.

The component that owns the time property must update its value once per time step. The values in the startDay,
startSec and startSecPart fields after an update must equal the values in the endDay, endSec and endSecPart
fields before that update.

Common Modelling Protocol – 40–

6. Definition of data types

As discussed in section 3, the types of all property data and event parameters are passed with the values in text
form using a data description language.

The protocol can denote data of the following types:
• primitive data types such as character, integer, floating point, Boolean;
• record structures containing sequences of smaller types;
• multi-dimensional arrays.

Records and arrays may be nested within each other. Multi-dimensional arrays are denoted as arrays of arrays.

XML (Extensible Markup Language) is a standard language definition technology which can be used to describe
complex structures. The data description language has been implemented within XML and is therefore known as
Data Description Markup Language, or DDML.

DDML is used in the returnValue, publishEvent, event and returnInfo messages.

6.1. Data Description Markup Language (DDML)

XML grammars are defined using document type descriptions. Here is the DTD for DDML:

<!ELEMENT type (field+|element)? >
 <!ATTLIST type name CDATA "" >
 <!ATTLIST type kind (integer1|integer2|integer4|i nteger8|single|double
 |boolean|char|wchar|string|w string|defined) "defined">
 <!ATTLIST type array (T|F) "F">
 <!ATTLIST type unit CDATA "-">
<!ELEMENT field (field+|element)? >
 <!ATTLIST field name CDATA "" >
 <!ATTLIST field kind (integer1|integer2|integer4| integer8|single|double
 |boolean|char|wchar|string| wstring|defined) "defined">
 <!ATTLIST field unit CDATA "-">
 <!ATTLIST field array (T|F) "F">
<!ELEMENT element (field+|element)? >
 <!ATTLIST element kind (integer1|integer2|integer 4|integer8|single|double
 |boolean|char|wchar|strin g|wstring|defined) "defined">
 <!ATTLIST element unit CDATA "-">
 <!ATTLIST element array (T|F) "F">

Note that the "ddml" fields passed in the data of various messages are not complete XML documents, but <type>
elements from DDML, for example:

<type kind=”double” array="T" unit="mm" />

which denotes an array of double-precision numbers with units of mm.

The values of the "kind" attribute of the <type> element denote the following:

Type Description
integer1 Signed 8 bit integer
integer2 Signed 16 bit integer
integer4 Signed 32 bit integer
integer8 Signed 64 bit integer
single IEEE single precision floating-point number (32 bits)
double IEEE double precision floating-point number (64 bits)
boolean Boolean value
char Character (8 bits)
wchar Unicode character (16 bits)
string String of characters
wstring String of Unicode characters
defined A record or array definition laid out in this type definition

A type or sub-type is an array if the <array> attribute equals "T".

In addition to conforming to the DTD, a document must follow these rules to be valid DDML:

Common Modelling Protocol – 41–

1. If the kind attribute of a <type>, <field> or <element> element equals "defined" and its array attribute
equals "T", then it must contain exactly one <element> element and no other elements. In this case the
<element> element defines the type of the elements of an array.

2. If the kind attribute of a <type>, <field> or <element> element equals "defined" and its array attribute
equals "F", then it must contain zero or more <field> elements and no other elements. In this case the
<field> elements define the types of the members of a record.

DDML in general, and type names in particular, are case sensitive.

6.1.1. Examples of type elements

(a) 4-byte integer, no units

 <type kind=" integer4 " />

(b) 2-dimensional array of temperatures

 <type array=" T">
 <element kind=" double " array=" T" unit=" oC" />
 </type>

(c) Named record type containing scalar and array fields

 <type name=" a_record" >
 <field name=" height " kind=" double " unit=" mm" />
 <field name=" apples " kind=" integer2 " array=" T" />
 <field name=" conductivity " kind=" single " unit=" dS/m" />
 </type>

(d) Character string (character array)

 <type kind=" string "/>

 is equivalent to

 <type kind=" char " array=" T"/>

(e) Named type: array of records

 <type name=" supplements " array=" T">
 <element>
 <field name=" name" kind=" string "/>
 <field name=" dmd" kind=" double " unit=" %" />
 <field name=" ME2DM" kind=" double " unit=" MJ/kg "/>
 <field name=" cp " kind=" double " unit=" %" />
 </element>
 </type>

6.2. Units in properties and events

As described in sections 2 and 3, integer- and real-valued quantities in the protocol have units. Units are
expressed as character strings. Text and Boolean quantities do not have units; “unit” DDML attributes in any
messages describing variables of these types should be disregarded.

6.2.1. Units for real values

Only certain unit strings are valid for real-valued quantities. The set of valid unit strings is generated by the
grammar set out below. The principles on which this grammar is based are as follows:

• In general, SI units are used. Non-SI metric units are also permitted.
• Units are constructed from a restricted number of "base" SI units by applying scaling prefixes and powers

and by combination into products and ratios.
• Integer, decimal and rational representations of powers are permitted. Where an exact integer representation

exists, it is used. Otherwise, where an exact decimal representation exists it is used (e.g. 0.75, not 3/4). All
powers are positive; negative powers are denoted by representing the unit in the denominator of a ratio.

• Where a unit is a ratio, all terms in the denominator must follow all terms in the numerator.
• Either "- " or "%" (where appropriate) are used to denote all dimensionless quantities.

Common Modelling Protocol – 42–

• The null or empty string is a valid unit. It is reserved to denote situations where the unit is unknown or any
unit is acceptable.

• The grammar may only be extended in future by expanding the set of "base" units.

<unit> ::= [<term>{ '.'< term>}]{ '/'< term>} | '-' | '%'

<term> ::= [<scale>] <scalable-unit>[' ^'< power>]
 | <non- scalable-unit>[' ^'< power>]

<scalable-unit> ::= 'g' | 'm' | 's' | 'K' | 'A' | 'mol' | 'cd'
 | 'rad' | 'sr' | 'Hz' | 'N' | 'Pa' | 'J' | 'W' | 'C' | 'V' | 'F' | 'ohm'
 | 'S' | 'Wb' | 'T' | 'H' | 'oC' | 'lm' | 'lx' | 'Bq' | 'Gy' | 'Sv' | 'kat'
 | 't' | 'l' | 'min' | 'h' | 'd' | 'y'

<non-scalable-unit>::= 'rad' | 'sr' | 'deg' | 'ha'

<scale> ::= 'p' | 'u' | 'm' | 'c' | 'd' | 'D' | 'h' | 'k' | 'M' | 'G' | 'T'

<power> ::= < integer> | < decimal> | < integer>'/'< integer>

<decimal> ::= [<digit>{ <digit>}] '.'< digit>{ <digit>}

<integer> ::= < digit>{ <digit>}

<digit> ::= '0' …'9'

Notes:

• Unit strings are case-sensitive; whitespace is permitted (and ignored).
• Base units and their dimensions are as follows (see the appendix for more detail on dimensions and SI

units):

g gram M Wb weber L2 M T-2 i-1
m metre L T tesla M T-2 i-1
s second T H henry L2 M T-2 i-2
K kelvin θ oC degree Celsius θ
A ampere i lm lumen I
mol mole n lx lux L-2 I
cd candela I Bq becquerel T-1

rad radian – Gy gray L2 T-2

sr steradian – Sv sievert L2 T-2
Hz hertz T-1 kat katal T-1 n
N newton L M T-2 t tonne M
Pa pascal L-1 M T-2 l litre L3

J joule L2 M T-2 min minute T
W watt L2 M T-3 h hour T
C coulomb T i d day T
V volt L2 M T-3 i-1 y year T
F farad L-2 M-1 T4 i2 deg degree –
ohm ohm L2 M T-3 i-2 ha hectare L2

S siemen L-2 M-1 T3 i2

• The "u" scaling factor denotes "micro" (10-6). Other scaling prefixes have their usual meanings.
• The tokens "/" and "." are each used with two different meanings, but the meaning can always be determined

from the following token.
• "%" must be used alone; for example, "%/d" is not a valid unit.

Examples of valid units for real variables:

hPa scaled unit
MJ/m^2/d ratio with two terms in the denominator
/s no numerator
kg^0.75 or kg^.75
m^1/3 but not m^1/2 , which is grammatically correct but should be given as m^0.5
g.m/s^2 but not m/s^2.g as numerator terms must precede denominator terms

Common Modelling Protocol – 43–

6.2.2. Units for integer values

Any string constitutes a valid unit for an integer variable.

6.2.3. Unit compatibility

The units of two real values are identical if the same terms appear in the numerator and denominator. The order
of the terms is not considered when assessing identity (e.g. "s.m" and "m.s" are identical units).

The units of two real values are compatible if they have the same dimension.

If an integer value has a unit that is a production of the above grammar, then the same rules for identity and
compatibility apply as for real values. Otherwise, units of integer values are identical only if their unit strings
are identical (case-sensitive) and are compatible only if they are identical.

Common Modelling Protocol – 44–

7. Simulation Description Markup Language (SDML)

As described in section 3, simulations and the components they contain are initialised using information held in a
text format. The simulation description language defined here gives the following information:
• the structure and interactions of the simulation, including the initial list of systems and components;
• the name of the simulation and each system;
• optionally, registrations for variables and events to be used in the simulation;
• information required to initialise the values of each component's properties.

The simulation description language has been defined within XML and is therefore known as Simulation
Description Markup Language, or SDML.

7.1. Specification of SDML

The document type description is:

<!ELEMENT simulation (sdmlversion, (system|componen t)+) >
 <!ATTLIST simulation name CDATA "simulation" >

<!ELEMENT sdmlversion (#PCDATA)>

<!ELEMENT system (location?, executable?, initdata? , (system|component)*)>
 <!ATTLIST system name CDATA #REQUIRED >
 <!ATTLIST system active (T|F) "T">
 <!ATTLIST system class CDATA #REQUIRED >

<!ELEMENT component (executable, initdata?)>
 <!ATTLIST component name CDATA #REQUIRED >
 <!ATTLIST component active (T|F) "T">
 <!ATTLIST system class CDATA #REQUIRED >

<!ELEMENT location (#PCDATA) >
<!ELEMENT executable EMPTY >
 <!ATTLIST executable name CDATA #REQUIRED >
 <!ATTLIST executable version CDATA >

<!ELEMENT initdata (#CDATA) >

Any component that can be system must use the <system> tag even when no child components currently exist.
The contents of <location> and <executable> elements in SDML documents are case-insensitive. <initdata>
elements are case-sensitive. The contents of "name" and "version" attribute values are case-insensitive.

7.2. Simulation structure in SDML

SDML denotes the structure of a simulation by means of nested <system> and <component> elements within the
<simulation> element. An example is given in Figure 7.1. Each simulation has a name.

<simulation name=" Example simulation 1 "/>
 <sdmlversion>1.0</sdmlversion>
 <component name=" sequencer " class=”sequencer”/> …
</component>
 <component name=" weather " class=”weather”/> …
</component>
 <system name=" paddock1 " class=”paddock”/> …
 <component name=" water” class=”water balance”/> …
</component>
 <component name=" phalaris " class=”pasture”/> …
</component>
 <component name=" clover " class=”pasture”/> …
</component>
 </system>
 <system name=" paddock2 " class=”paddock”/> …
 <component name=" water " class=”water balance”/> …
</component>
 <component name=" fescue " class=”pasture”/> …
</component>
 <component name=" clover " class=”pasture”/> …
</component>
 </system>
</simulation>

Example Simulation 1

paddock1

water phalaris clover

paddock2

water fescue clover

sequencer

weather

Figure 7.1. Representation of the structure of a simulation in SDML.

Common Modelling Protocol – 45–

7.3. Component and system initialisation in SDML

Components are specified in SDML by means of <component> and <system> elements. These elements must
contain:
• a "name" attribute that gives the name of the component; and
• an <executable> element that gives the name of an executable file containing the component logic.

They may also contain:
• an <initdata> element containing all initial values, in a format that is intelligible to the component but that is

not specified within the protocol.

The <executable> element determines the value of a component's type as returned in a returnInfo message; for
example all components using a module called "soilwater.dll" might have the type "Soil Water". Different
modules may implement components of the same type.

A <system> element may also contain a <location> element that specifies a machine on which the system is to be
executed. If this element is not given, the same machine as the containing system is used.

The "active" attribute specifies the initial value of the standard active property.

Common Modelling Protocol – 46–

8. Other elements of protocol messages

8.1. Names

Simulations, components, properties and events have names that are used to denote them in certain messages and
in SDML.

Names are composed of alphanumeric characters and the underscore ("_"). When names are compared,
comparisons are case-insensitive.

Names may be "qualified" to reduce or eliminate ambiguity. Component names are qualified by preceding them
by the name of the system of which they are a part, with a "." separator, e.g. "system.component". This process
of qualification may be recursed, e.g. "system.subsystem.component".

Property and event names are qualified by preceding them by the name of the component of which they are a
part, again with a "." separator. (The component name may itself be qualified, so that
"system.component.property" is a valid qualified name.

A qualified name that begins with the name of a component managed by the simulation system is described as
"fully qualified" as it has no possibility of ambiguity. The qualified name of a component is sent in the
requestComponentID message, and fully qualified names for components are returned in the
returnComponentID message when a component is being created. The standard name property returns a fully
qualified name for the component.

"Checkpoints" also have names. These names may be any text string that can specify a storage location within
the operating system in which the protocol is implemented.

8.2. Registration identifiers

Components, properties and event handlers also have integer ID values that are also used to denote them in
messages. Component IDs are used as message addresses (see section 9.1). ID values are used in most messages
for reasons of efficiency.

Each component is responsible for assigning ID values its properties and event handlers. Each property of a
component must have a distinct registration ID, as must each event. It is permitted for a property to share its ID
with an event, as the protocol messages always contain a context that makes the distinction clear.

The simulation system is responsible for assigning ID values to components. Each component in a simulation
must have a distinct registration ID.

8.3. Message identifiers

Every message has an integer identifier that is assigned by the sender. Every message sent by a component must
have a unique value for the identifier, so that the ordered pair (sender, message ID) identifies a message uniquely
in the simulation.

8.4. Property and event matching

Where the sources for a driving variable or the subscriptions to an event are not specified by the simulation
writer, the component's owning system must identify the properties or events in other components that match it.
To match, two properties or events must have the same name (case-insensitive).

Regardless of whether sources or subscriptions are determined by the simulation writer or a system, the type of
source properties or event publishers must also be compatible with the type of driving properties or event
handlers. A type is compatible with another if a value of the first type contains all the information required to
construct a value of the second type:

• Both types must be scalars, arrays, or records.

Common Modelling Protocol – 47–

• If they are scalars, the following table applies:

 Second type
 int1 int2 int4 int8 sgl dbl boolean char wchar str wstring

int1 x x x x
int2 x x x x
int4 x x x x
int8 x x x x
sgl x x
dbl x x

boolean x
chr x x x x

wchar x x
str x x

F
irs

t t
yp

e

wstring x

Also, the units of the two scalars (where applicable) must be compatible as defined in section 6.2.3.

• If they are arrays, then the type of elements of the first array must be compatible with the type of elements of
the second array.

• If they are record structures, then for every field of the second type there must be a field in the first type that
has the same name and a compatible type.

• A special case applies for record structures passed in the params field of event messages. In this case the
type of the event data is compatible with the type of the handler only if:

(a) for every field of the event handler type, either:
- there is a field in the event data type that has the same name and a compatible type; or
- the component implements a default value for the field

and

(b) every field in the event data type matches a field in the event handler type. Note that this condition
prevents event handlers from taking a subset of the incoming data, as permitted in other contexts.

The final rule provides a mechanism for implementing events with default parameters. The component descriptor
routine (section 9.2) provides the default values of event parameters.

Note that type compatibility is not a transitive relationship.

Protocol implementations may place further restrictions on the matching of properties and events, including
further restrictions on type compatibility.

Common Modelling Protocol – 48–

9. Implementation of the protocol

9.1. Layout of messages

Messages in the protocol are composed of a header and message data. The two components need not be
contiguous in memory.

9.1.1. Message header

The header of all messages has the same structure, given in the following table:

Field Denotes Type
Version Protocol version number. The high-order byte of this word denotes a

major version number and the low-order byte a minor version
number. This version of the protocol is 1.0.

2-byte word

MsgType Unique ID denoting the type of the message. This must take a value
from the table of message types in section 4.

2-byte word

From Originating component, denoted by its registration ID. 4-byte integer
To Destination component, denoted by its registration ID. 4-byte integer
MsgID Message identifier (see section 8.3) 4-byte integer
Acknowledge Flag denoting whether an acknowledgement message should be

returned to the originating entity on completion of message
processing (zero = no, non-zero = yes). This field has been given a
length of 4 bytes to maintain word alignment.

4-byte word

NDataBytes Number of bytes in the data component of the messages. 4-byte word
DataPointer Pointer to the message data component. This pointer is NULL if

NDataBytes is zero.
4 bytes

9.1.2. Message data

Each field of the message data is laid out sequentially in a contiguous block of memory. Message data fields are
typed. The type of a data field must either be one of a finite set of primitive types, an array of a type, or a
structure containing sub-fields (each with its own type).

Certain messages contain a field that denotes typed values. The data in these fields ("event" and "property" data
within the "message" data) are laid out according to the same rules as for message data.

Data of primitive types occupy blocks of memory of the following sizes:

Type Size (bytes) Type Size (bytes)

Boolean 1 Single 4
Byte 1 Double 8
Short Integer 2 ASCII Character 1
Integer 4 Unicode Character 2
Long Integer 8

Text strings (ASCII or Unicode) are represented in message data as arrays of characters. They have been
included in DDML for convenience.

Boolean values are False when the integer value of the field is zero.

Arrays are laid out as the number of array members (4 byte integer), followed by each array member
concatenated together. All multi-dimensional arrays - including arrays of text strings - are represented as arrays
of arrays.

Records are laid out with each member concatenated.

9.1.3. Examples of arrays

 (a) One-dimensional array of integers: [5, 6, 7, 8]

44

Dim=4

4 4 4

5 6 7 8

Common Modelling Protocol – 49–

(b) Text string, represented as an array of character: "Quick"

4

Dim=5

1

"Q"

1

"u"

1

"i"

1

"c"

1

"k"

(c) Array of array of double-precision real values:

60

50

40

30

20

10

4

Dim=2

4

Dim=3

8

10.0

8

20.0

8

30.0

4

Dim=3

8

40.0

8

50.0

8

60.0

(d) Array of leaf areas within an array of tillers:

T1 L1

T1 L2

T1 L3

T1 L4

T2 L1 T3 L1 T4 L1

T2 L2

T2 L3

T3 L2

T3 L3

T4 L2

4

Dim=4

4

Dim=4

8

T1 L1

8

T1 L2

8

T1 L3

8

T1 L4

4

Dim=3

8

T2 L1

8

T2 L2

8

T2 L3

4

Dim=3

8

T3 L1

8

T3 L2

8

T3 L3

4

Dim=2

8

T4 L1

8

T4 L2

(e) Array of text strings, represented as an array of array of character: ["Quick", "brown", "fox"]

4

Dim=5

1

"Q"

1

"u"

1

"i"

1

"c"

1

"k"

4

Dim=3

1

"b"

1

"r"

1

"o"

1

"w"

1

"n"

4

Dim=5

1

"f"

1

"o"

1

"x"

4

Dim=3

Common Modelling Protocol – 50–

9.2. Component descriptor routine

The executable module that implements a component's logic (i.e. the executable referred to in the <module>
element of the component's initial SDML) must have as part of its interface a function that returns a description
of the component. The function is intended for use by the software that is used for writing simulations. The
format for component descriptions is part of the protocol.

Component descriptions are XML documents conforming to the following DTD:

<!ELEMENT describecomp (executable, class, version, author,
 system?, property*, event*) >

<!ELEMENT executable (#PCDATA)>
<!ELEMENT class (#PCDATA)>
<!ELEMENT version (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT system EMPTY >

<!ELEMENT property (type, description)>
 <!ATTLIST property name CDATA >
 <!ATTLIST property descr CDATA >
 <!ATTLIST property access (read|both|write|none) "read">
 <!ATTLIST property init (T|F) "F" >

<!ELEMENT driver (type, description)>
 <!ATTLIST driver name CDATA >
 <!ATTLIST driver descr CDATA >
 <!ATTLIST driver minsrc CDATA "1">
 <!ATTLIST driver maxsrc CDATA "1">

<!ELEMENT event (field*, description)>
 <!ATTLIST event name CDATA >
 <!ATTLIST event descr CDATA >
 <!ATTLIST event kind (published|subscribed) "pub lished" >

<!ELEMENT type (field+ | element+ | (defval,minval ?,maxval?))?)>
 <!ATTLIST type kind (integer1|integer2|integer 4|integer8|single|double|boolean
 |char|wchar|string|wstrin g|defined) "defined">
 <!ATTLIST type array (T|F) "F">
 <!ATTLIST type unit CDATA "-">

<!ELEMENT field (name, (field+ | element+ | (defv al,minval?,maxval?))?)>
 <!ATTLIST field name CDATA "" >
 <!ATTLIST field descr CDATA >
 <!ATTLIST field kind (integer1|integer2|integer 4|integer8|single|double|boolean
 |char|wchar|string|wstrin g|defined) "defined">
 <!ATTLIST field array (T|F) "F">
 <!ATTLIST field unit CDATA "-">

<!ELEMENT element (field+ | element+ | (defval,min val?,maxval?))? >
 <!ATTLIST element kind (integer1|integer2|integer 4|integer8|single|double|boolean
 |char|wchar|string|wstrin g|defined) "defined">
 <!ATTLIST element array (T|F) "F">
 <!ATTLIST element unit CDATA "-">

<!ELEMENT defval (#PCDATA)>
<!ELEMENT minval (#PCDATA)>
<!ELEMENT maxval (#PCDATA)>
<!ELEMENT description (#PCDATA)>

• The <executable> element gives the location of the executable module providing the description.

• The <class>, <version> and <author> elements should return the values of the type, version and author
standard properties.

• The <property>, <driver> and <event> elements give information about the component type's owned
properties, driving properties, and event handlers respectively. Some component instances may have further
properties and events defined at run-time; these are not included in the description.

Common Modelling Protocol – 51–

• The "access" attribute of a <property> element denote whether the property is readable, writeable or both or
neither. The "init" attribute denotes whether it may appear in the component's initializing SDML. “T”
means that it is optional and “F” means that it will not appear.

• The "minsrc" and "maxsrc" attributes of a <driver> element give the range of replies to a request for that
property which the component will accept. The "minsrc" attribute must denote a non-negative integer; the
"maxsrc" attribute must either denote an integer greater than or equal to that denoted by the "minsrc"
attribute, or else be the null string (which means that the property has no maximum permitted number of
sources). The integer values are parsed according to the rules for <defval> elements below.

• The type information for events is denoted as a list of fields so as to force each parameter of the event to
take a name.

• The <type>, <field> and <element> elements closely follow the structures used in DDML.

• The optional <defval> elements provide default values. The interpretation depends upon the element in
which they are found:

<property> Default value for the property or property member. Particularly useful when
the "init" attribute is set to "T".

<driver minsrc = "0"> Value that the component will use for the driving property in the absence of a
source property.

<event kind = "subscribed"> Default values used when not all parameters of the event handler are
transmitted in an event; see section 8.4.

In other cases, <defval> elements are ignored.

• The contents of <defval> elements for must follow the following rules:

integer1 ,
integer2 ,
integer4 ,
integer8

Text must be an integer in decimal notation, i.e. a production from the following grammar:
 < integer> ::= ['-' | '+'] <digit>{ <digit>}
 < digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

single ,
double

Text must be a real number in decimal or exponential notation, i.e. a production from the
following grammar:
 < real> ::= < integer>['.' { <digit>}]['E' | 'e'< integer>]

char , wchar Text must be a single character from the appropriate character set.

string ,
wstring

Any text from the appropriate character set is permitted.

boolean Text must be a production from the following grammar:
 < boolean> ::= ' TRUE'|' FALSE'|' true '|' false '

• Numeric <property> elements may also give minimum and maximum legal values in <minval> and
<maxval> elements respectively. Their contents must follow the rules for valid <defval> elements. These
elements are ignored in other contexts.

• The “descr” attribute is designed for short description text and is advised to be kept to 50 characters or less.

Common Modelling Protocol – 52–

10. Component Implementation Techniques

10.1 Common implementation interfaces for Microsoft Windows

In order to permit a component developed by one organization to be used by simulation software from other
organizations, the following interfaces must be provided by protocol-compliant components implemented in
Microsoft Windows. These interfaces should be regarded as a prescription for protocol implementations under
other operating systems.

The __stdcall calling convention described here assumes that the exported function names are not mangled
and do not have leading underscores. All functions below use the stdcall calling convention.

10.1.1. Interface for simulation design and construction

Protocol-compliant components must be implemented within Windows as dynamic link libraries. Each
component executable must export the following functions.

(a) Component description interface

void getDescriptionLength(const char* szContext,
 int* lLength)

Returns the length of the component
description in bytes, excluding the final
null character

void getDescription(const char* szContext,
 char* szDescription)

Returns a null-terminated string
containing the component description as
set out in section 9.2.

The szContext parameter is designed to allow polymorphic components specify a description based on details
within the character string. The contents of this string are implementation specific and if not used it should be an
empty string.

(b) Initialisation script interface

As described in section 7, the initialisation information provided to a component in the SDML document (the
“initialisation script” for each component) is in a format that is not known to the rest of the simulation. These
routines form an interface for building and parsing the component-specific initialisation scripts from name, type
and value data.

Initialisation scripts are understood to be composed only of initialised properties, each of which is composed of a
name, a type and a value. Note the use of character strings to denote multiple instances of initialisation scripts for
a particular component.

void createInitScript(const char* szScriptName)
void deleteInitScript(const char* szScriptName)

Create a new initialisation script.
Delete a previously created script.

void initScriptLength(const char* szScriptName,
 int* lLength)

Length of a script in bytes, excluding
the final null character

void textToInitScript(const char* szScriptName,
 char* szScriptText)

Sets the contents of an initialisation
script using a component specific
format. The properties in this text will
be appended to the list of any existing
ones in this script.

void textFromInitScript(const char* szScriptName,
 const char* szScriptText)

Returns the contents of an initialisation
script

void valueToInitScript(const char* szScriptName,
 const char* szPropertyName,
 const char* szTypeDDML,
 void* pValueData)

Sets an initial value within an
initialisation script. szTypeDDML
denotes the type using DDML;
pValueData is a pointer to value data
laid out as for message value data
(section 9.1).

Common Modelling Protocol – 53–

int valueFromInitScript(const char* szScriptName,
 const char* szPropertyName,
 const char* szTypeDDML,
 void* pValueData)

Returns an initial value from an
initialisation script. szTypeDDML
denotes the type using DDML;
pValueData is a pointer to value data
laid out as for message value data
owned by the component (section 9.1).

The return value is the number of bytes
in the pValueData location.

(c) Name of the wrapper DLL

As described below, each component DLL has a “wrapper” DLL that implements an interface, between the
simulation software and the component DLL, for passing messages.

void wrapperDLL(char* szWrapperDLL) Returns the name of the “wrapper” DLL. If
szWrapperDLL is null or zero length, the
simulation assumes that the component DLL
acts as the “wrapper”..

10.1.2. Component wrapper DLLs

As an aid to implementation, the common interface assumes that a “wrapper” DLL interposes between the
simulation implementation and the component DLL proper. In all protocol implementations, internal component
logic must be carried out by passing the message invoking the logic to the wrapper DLL; the wrapper DLL then
passes the message contents to the logic DLL by implementation-specific means. A component DLL may act as
its own wrapper.

The result is that any Windows protocol (simulation system) implementation will be able to load and execute any
component.

(simulation.dll)

SimSystem

System1 Comp2

Comp12Comp11

(wrap-pi.dll) (wrap-aps.dll)

(system1.dll)

(comp11.dll)

(comp2.dll)

(comp12.dll)

Implementation-
specific i/f's

Common
wrapper i/f

Figure 10.1. Component DLLs and their wrappers interacting with the protocol.

In the above diagram, the wrap-pi.dll shows a component wrapper implemented by CSIRO-PI and the wrap-
aps.dll show a wrapper implemented by APSRU. Each of these wrappers will export the same functions so that
the simulation.dll binary has a consistent interface to any functioning simulation components. The interfaces
between the wrapper DLL's and the component binary's can be of a proprietary nature.

Common Modelling Protocol – 54–

Providing communications between the simulation dll and the logic components.

A callback function is provided in the simulation dll for messages sent to it from any logic dll (or wrapper class).
This callback follows this definition:

typedef _stdcall void (MCB)(const unsigned int *compInst, TMsgHeader *message);

where compInst points to the component instance in the simulation dll and message points to the
message header being sent.

The component wrapper DLL's must export the following routines:

__stdcall void createInstance(

 const char *szLogicDLL,

 const unsigned int *lCompID,

 const unsigned int *lParentCompID,

 unsigned int *lInstanceID,

 const unsigned int *compInstance,

 MCB *messageCallback);

Creates an instance of a component.

szLogicDLL is the name of the DLL containing the
component logic (input);

lCompID is the instance’s registration ID
(input);

lOwnerID is the registration ID of the system
that manages the component (input);

lInstanceID is a unique identifer used in later calls
to the interface (output). Pointer to
the instance of the logic dll (or
wrapper class).

compInstance pointer to the instance of the
component within the system making
this call.

messageCallback function pointer to the entry into the
system for messages sent back into
the system.

__stdcall void deleteInstance(

 int* lInstanceID)

Deletes the component instance denoted by
lInstanceID .

__stdcall void messageToLogic(

 unsigned int *lInstanceID,
 TMsgHeader* message,
 bool* bProcessed)

Passes a message to the component instance denoted
by lInstanceID . bProcessed returns TRUE i.f.f.
the component logic has carried out all processing
necessary for the message.

• Memory management: The receiver of any message across the simulation dll – wrapper interface must take a
copy of the message. The sender keeps ownership of the message and can delete it after it has been sent.

• The definition of TMsgHeader follows the layout of the message header in section 9.1.

• Because multiple simulations may be running concurrently and using the same wrapper DLL, the component
registration ID (which is only unique within a single simulation) is insufficient as a unique instance
identifier.

• Knowing whether or not a message was processed by the component logic is useful in the implementation of
services.

10.1.3. Distributing the Simulation over more than one machine.

To enable the sharing of the simulation components over more than one machine address space it would be
possible to build a component binary which acts as an interface to another component residing on another
machine.

Common Modelling Protocol – 55–

Figure 10.1 Logical view of a distributed system

System

Component alias

Communications
layer

Machine
boundary

Component
logic

Common Modelling Protocol – 56–

10.2 Note on system implementations

In the majority of cases, a system that receives a message responds by routing it toward its destination
component. If the receiving system manages the destination component, this is straightforward. If not, the
receiving system will require some means of determining whether the message should be routed
(a) "up" to the system that manages the current system's system; or
(b) "down" to the system of one of the sub-systems of the system managed by the system.

Note: The PI implementation ensures that a system knows which components belong to it at any level. Because
the components are all registered with the Simulation via calls routed through parent systems, it is not difficult
for a System to store the ID's of any owned components.

Common Modelling Protocol – 57–

11. References

Beek J & Frissel MJ (1973). Simulation of nitrogen behaviour in soils. PUDOC, Wageningen.

Brouwer R & de Wit CT (1968). A simulation model of plant growth with special attention to root growth and
its consequences. Proceedings of the 15th Easter School of Agriculture Science, 224-242.

Christian KR, Freer M, Davidson JL, Donnelly JR & Armstrong JS (1978). Simulation of grazing systems.
PUDOC, Wageningen.

Donnelly JR, Moore AD & Freer M (1997). GRAZPLAN: decision support systems for Australian grazing
enterprises. I. Overview of the GRAZPLAN project, and a description of the MetAccess and LambAlive
DSS. Agricultural Systems 54, 57-76.

Freer M, Davidson JL, Armstrong JS & Donnelly JR (1970). Simulation of summer grazing. Proceedings of the
XI International Grassland Congress, 913-917.

McCown RL, Hammer GL, Hargreaves JNG, Holzworth DP & Freebairn DM (1996). APSIM: a novel software
system for model development, model testing, and simulation in agricultural systems research.
Agricultural Systems 50, 255–71.

O'Neill RV, De Angelis DL, Waide JB & Allen TFH (1986). A Hierarchical Concept of Ecosystems. Princeton
University Press, Princeton NJ.

Common Modelling Protocol – 58–

Appendix: Dimensions and SI Units

There is a difference between dimensions and units. A dimension is a measure of a physical variable (without
numerical values), while a unit is a way to assign a number or measurement to that dimension. For example,
length is a dimension, but it is measured in units of feet (ft) or metres (m).

Primary dimensions are defined as independent or fundamental dimensions, from which other dimensions can
be obtained. There are seven primary dimensions:

Primary Dimension Symbol SI unit

Mass M g (gram)
Length L m (metre)
Time T s (second)
Temperature θ K (Kelvin)
Electric current i A (ampere)
Amount of light I cd (candela)
Amount of matter N mol (mole)

Other dimensions and units are derived from the primary dimensions and units as products and powers. The SI
system defines a further 22 derived units:

Derived quantity Name Symbol
Definition using

primary units

Plane angle radian rad m m-1 = 1
Solid angle steradian sr m2 m-2 = 1
Frequency hertz Hz s-1
Force newton N m kg s-2
Pressure, stress pascal Pa m-1 kg s-2
Energy, work, quantity of heat joule J m2 kg s-2
Power, radiant flux watt W m2 kg s-3
Electric charge, quantity of electricity coulomb C s A
Electric potential difference, electromotive force volt V m2 kg s-3 A-1
Capacitance farad F m-2 kg-1 s4 A2
Electric resistance ohm Ω m2 kg s-3 A-2
Electric conductance siemens S m-2 kg-1 s3 A2
Magnetic flux weber Wb m2 kg s-2 A-1
Magnetic flux density tesla T kg s-2 A-1
Inductance henry H m2 kg s-2 A-2
Celsius temperature degree Celsius ºC K
Luminous flux lumen lm m2 m-2 cd = cd
Illuminance lux lx m2 m-4 cd = m-2 cd
Activity (of a radionuclide) becquerel Bq s-1
Absorbed dose, specific energy (imparted), kerma gray Gy m2 s-2
Dose equivalent (d) sievert Sv m2 s-2
Catalytic activity katal kat s-1 mol

The above table has been taken from the US National Institute of Standards and Technology website:
http://www.physics.nist.gov/cuu/Units/units.html

