Specification of the CSIRO
Common Modelling Protocol

AD Moore, DP Holzworth, NI Herrmann, E.Zurcher,
NI Huth, BA Keating & MJ Robertson

Version: 9 Oct 2009

@

CSIRO ————

FLAMT
INDUSTRY

L INTRODUCTION. ...ttt st s sr et s e e e e s e e r e s b sb e b e et e e e se e e n e s resreerenseeee e e ennes 1

1.1. Formal definition of @ SIMUIATION.uuuiiiiiiiieiei e
1.2. Roles involved in defining and uSiNg SIMUIBEO.uuiiiiiiiiiiiiiee et e e

2. DEFINITION OF ENTITIESWITHIN THE PROTOCOL

2.1 Components

e (0] 0 1= (1= SRS
2.3 Events and @VENT NANGIEIS............ceeeemmee ettt e e e e e e et e e e s e s e e s ee b s e e s eebaa e e e eeraaas 5.
2.4 Systems and SIMUIALIONSuuiiiiieeeeeees i e e e e e e e e s see s e e e reerraeaaaeeeeaaeesaasanaann 6..
B2 AV 1TSS T= o =T 6
3. TASKSPERFORMED USING THE PROTOCOL ..ottt ettt sae s snae s s ne e 7
3.1, INitialiSation OF & SIMUIATION et e e e e e e e e e et e e e e s st e e st s e st e ssase st eannnans 8.

3.2. Termination of a simulation
3.3. Computation of a time step

3.4. Transmission of driving PropPerty VAlIUES ...c..c.ooii it e e e e e e e e 12
3.5. Changing another compoNENt'S OWNEA PrOPEILYveerreeieeeieeeeeeee e e e e e e e e ee e e e e e e aaaaaaae e 14
3.6. TranSMISSION Of QN EVENT ... ettt e e e e e e e ettt e et e et e e e eaaaaaaaaaaaaaeaaaannns 5.1
3.7. TransSmiSSIiON Of @N EITOF MESSAGE.uuetettitiiaaaaa e e e et ittt bebbe et eeeaaaaaaaaaaaasaaaaannnnsbbebeeeaeeeeeeeaaeas 16
3.8. Recording and restoring the MOdel State..........ooii i 17
3.8.1. Recording the MOdel STALE ... ot 17
3.8.2. Restoring the MOl STALEeiiieeeeeee ettt 18
RESIONNG @ ChECKPOINTttt e ettt e et e e e e e e e e e e e e e e e s e s e e nnnnbnnbeneeeeeees 18
3.9. Changing the MOdel SITUCLUIE ...ttt ennnnenes 19
3.9.1. Registration of @ Property OF @VENT ... i e e e eeeeeeeeas 19
3.9.2. Deregistration Of @ PrOPeItY OF EVENT. ..t e e e e e e e e e e e e e 20
3.9.3. Adding @ COMPONENt 10 @ SYSTEIM ...oiiiiiiiee ittt e e e e e e e e e e e e e e e e e e s 21
3.9.4. Removing a component from @ SYSTEIM ... e ee e 22
3.9.5. Deactivating @ COMPONENT........... i e e e ettt ettt ettt eeeeeeaaaaaesaa s e nnnnnbebbeeeseeeeeaeaaaaaaaaens 23
3.9.6. ACtIVAtiNg @ COMPONENT......oi ettt ettt e e e e e e e e e e et e e e et et et e e e eaaaaeaaaaeaaeaaaaannnnnnnenes 23
3.10 Obtaining information about properties, COMGITIRA OF EVENLSooiiiiiiiiiiiieees s eneieeeees 24
4. PROTOCOL MESSAGES.......ccoo ittt b e st n e n bt nnen e nnene s 25
4.1, SUMMArY Of PrOtOCOI MESSAGESuuuutereereaeeeeeieeiietiie s tarbeatae e erreetaaaaeasaasaaaassstesrarrrearrerrearaaaaees 25
4.2. Protocol messages iN AetaAll...........ccooomr it e e e e e e e e e e n e 6.2
5. STANDARD PROPERTIES AND EVENTS.....coiitiiiiirieene ettt st snene e 38
5.1. Standard component properties
5.2. Standard event NANGIEIS ... o ettt e e e e e ettt e e e e e e e aaaaaaeaens
5.3. Time propertyccccceuvvevrennnen.
6. DEFINITION OF DATA TYPES.....co oottt ettt
6.1. Data Description Markup Language (DDIML)..uceeeeeiiiiririeeeee e cccciiteseee e e s e e e e e e e e s e s s s ennnnnnnes 40
6.1.1. EXamples Of tyPe ElEMENTS.......coiieeeeee e e aaaaa s 41
6.2. UNItS iN PropertieS and ©VENTS.........ceeeieeiiiiieiiiiieeete e e e e e e e e s e e s e ere e e e e e e taeaeaeesaesaessssnsannenereneeneeeees 41
6.2.1. UNIS fOF rEAI VAIUES.......oc it cemem ettt e e s e e e s e e 41
6.2.2. UNILS TOr INTEQET VAIUBSvveieeeies ettt e e e e e e e e s e s s e e e e e e e e e aaeaeeaeneens 43
7 T U T 1 o] 13T o= U110 111 3.4
7. SIMULATION DESCRIPTION MARKUP LANGUAGE (SDML) .ottt 44
7.1, SPECIfICAtION OF SDIML......uuutiiiiiiiiit ettt e e e e e e e e e e e e s ab bbbttt e et et e aaaaaaaaeaaaesaasaaaannns 4.4
7.2. SIMUIAtioN StHUCLUIE 1N SDML....coiiiii ettt ettt e e e e e e et eeeeeaaeas 44
7.3. Component and system initialisation iN SDIMLL ...ttt 45
8. OTHER ELEMENTS OF PROTOCOL MESSAGES........ccoieiiireinenreeesese s 46

S 0 T N 7= T2 =N 46

8.2. RegiStration IdENTIIEIS. ettt e et eee e e e aaaaaaaaeeeeaaan 46

8.3. MESSAQE IHENTITIEIS ...ttt ettt e e e e e e e s e bbbttt e e eeeeaaaaaaaaaeeeaaan 46
8.4. Property and eVeNnt MALCNINGooiiiiiiiiiiit ettt e e e e e e e e e e e e e e e e e e s aannnneees 46
9. IMPLEMENTATION OF THE PROTOGCOLccoeiiiicitirieieeneieesre s 48
9.1, LaYOUL Of MESSAUES. ..uteveieiiiiiiieie et eeeeieitt ettt e e e e eeteataeaeaeesee s s s s aaaataeeaeeretataaaaaaaaeeesaasanansnnnrnnrnrns 48
9.1.1. MESSAQE NBAUENiiiiiiie ettt e e e e e e e e e e s s et e e e eeeataeaaeaeeeeeaanaaanne 48
Lo T =TT T= o [0 - - P 48.
Lo TG T = 10 0] o1 (TSI = 14 = £ T OSSP 48
9.2. CompoNeNt AESCIIPLON FOULINEtceeeeereeeeeerrereeeeeeeesesisssssssrrer e rrrrreeeaeeeesesssssaaaansnsnsrnrsennereereees 50
10. COMPONENT IMPLEMENTATION TECHNIQUES.......coooititireiennieesirie e 52
10.1 Common implementation interfaces for Micro8ifidOWS ..., 52
10.1.1. Interface for simulation design and CONGSHIAN..........ccoiiiiiiiiiiiiii e 52
10.1.2. Component WIraPPer DLLS ... e e e e e 53
10.1.3. Distributing the Simulation over more tha@ame machine...............ccooiiiiicceeee e, 54
10.2 Note on system iMPIEMENTALIONScceaeeeieeii ettt e e e e e e e e e e e e e e e e eeees 56
11 REFERENCES..... .ottt ettt e et ne e r st nnen et e n st nnas 57

APPENDIX: DIMENSIONSAND Sl UNITS....ociiiieeieeer st 58

1. Introduction

The purpose of this document is to specifp@lelling protocol, a modular framework that enables the sub-
components of simulation models to be intercharmgdieen different modelling software.

Simulation modelling in agriculture and resourcenagement has now been under way for over 30 years
(Brouwer & de Wit 1968; Freest al. 1970). Very early in that history, the desirakitif generic simulation
tools was recognized (e.g. Beek & Frissel. 1973erQ@ime the following attributes have been recagdias
desirable in a generic agricultural simulation tool

Hierarchical Ecological and hence agronomic systemsaedium-numbesystems. They contain too many
entities to be treated amall-numbesystems that can be solved by differential-equatio
techniques; and they have too few entities to &&téid asarge-numbeisystems that are amenable
to treatment as statistical assemblages.

Current ecological theory suggests that the begttavanalyze this kind of complexity is to take
advantage ofrganizationin these systems that arises from differencesamdtes of different
processes. This organization leads naturally tcessmtations of reality that are hierarchically
structured (O'Neilet al. 1986).

M odular Similar considerations lead to the separation @$elly-interacting parts of a model system into
discrete entities in the model code. Modularizatias practical benefits, especially in allowing
scientists in research teams to specialise in rlingaine part of the larger system (McCoetral.
1996).

Configurable Once a simulation model is decomposed into sub-tapildecomes natural to arrange the sub-
models in different configurations to reflect agarof different real-world situations (McCoweh
al. 1996).

Interchangeable Modular construction also permits the substitutéone representation of a process by another,
depending on the needs of the modeller. This carsbtul in comparing different representations
of a process, or in configuring a simulation fdiaént execution.

Interchangeability applies not only to sub-modbilg, also to modelling software. Ideally it should
be possible to use the software implementing a iodmnjunction with a range of different user
interfaces for different purposes (e.g. Donnellyal. 1997).

Mixed discrete Many processes in agricultural systems are fundtattgicontinuous in nature. Others,
& continuous particularly management interventions, involve phatranges in the state of the system. Event-
based representations of management have a loimgy@ede.g. Christiant al. 1978).

The protocol described in this document is interteslipport the construction of simulation toolattimeet
these criteria.

This document describes version 1.0 of the modgpimtocol.

Common Modelling Protocol -1-

1.1. Formal definition of a simulation

Before defining a modeling protocaol, it is importan define the kind of models - "simulation" moslethat it is
intended to support.

A simulation is a computation of dynamic model between given start and end times, i.e. it is an
integration over time.

A dynamic model is defined by a set of equatiorige &quations of a dynamic model may fall into redtur
groupings known asubmodels. Some of these submodels may have equations amditigs of identical
form, i.e. they belong to the samémodel class. The dynamic model as a whole can therefore &eed
as a collection of instances of various submodedsds.

A submodel is composed of a segofntities, a set of ate equations, and a set odvents.

All quantities can be expressed as real numbeegens, or Boolean values. Real-valued quantites h

dimension andunits; the units must conform to the dimension. | idigrdifferent kinds of quantities:

(a) Constants are quantities that are (i) invariant in time diidhave the same value in all instances of a
submodel within a model and all simulations of adelo

(b) Parameters are quantities that are invariant in time, but riedge different values between different
instances of a submodel within a model or betwé&enlations of a model.

(c) Statevariablesare quantities that may vary in time as the sitrtais computed. The value of a state
variable must be stored in order to compute thedyes of the submodel. As a result, the initiabreal
of each state variable must be specified in ordethtfe simulation to be computed. There is a oRe-t
one correspondence between state variables amdtthequations of the submodel. In principle, there
should be no redundancy in the state variables.

(d) Summary variables may also vary in time, but their value at any gitieme may be determined from
the current values of the state and driving vaeiablThey may be used to provide output from the
simulation; to provide driving variables for otterbmodels; or as notational conveniences in the
specification of the submodel's rate equationsvtiith case | refer to them as "intermediate”
variables).

(e) Drivingvariables are quantities which are stored externally tov@mgisubmodel but which must be
known in order to compute the dynamics of the sulbehoThey may (and usually do) vary in time.
Each driving variable must havesaur ce, to which it is constrained to be equal at alleima source
may be a constant, parameter, state or summamblarfirom another submodel, or it may be a quantity
external to the simulation. The set of submodeinly variables with external sources is the set of
driving variables for the model as a whole.

It should be noted that this terminology is nohdidized; for example, "parameter"” is used to nfagn
(b) and (c) above.

Each real-valued state variable hasig equation associated with it. The rate equation is an @gin
differential equation that gives the rate of chaafjthat state variable over time. The right-haittk of
each rate equation must be composed only of cassizerameters, state variables, summary varialoeés
driving variables proper to the submodel.

Each submodel has zero or mevents’ associated with it. An event, in this sense, is

- a set of equations defining an instantaneousgshanone or more state variables; and

- a "trigger": a logical relation that, if satisfi@t any time, causes the change(s) in state Vasiab

Each event has zero or more quantities, knowevest parameters, that may be used in specifying the
right hand sides of the equations and the trigimrgawith constants, parameters, state variablespsary
variables and driving variables proper to the sutbeho

A simulation is therefore completely defined by:
- the model, i.e. the set of submodels it contains;
- the start and end times for the computation;

No consistent terminology exists within the didicie of simulation modelling. The definitions mddere
are in relatively common use.

The term "event" is used in another sense withérmodelling protocol. Model events will be reeted
by protocol events, but so will other parts of tieenputation. Unfortunately no good alternative texists.

Common Modelling Protocol —-2-

- the values of the state variables and event pateasof each submodel at the start time;
- the time course of the model's driving variables.

1.2. Roles involved in defining and using simulatio ns

Simulation
user

M odeller

Component
builder

Protocol
implementer

Uses a pre-configured dynamic model to executelations. The user specifies the data to be
used during the simulation (e.g. the start andtines for the simulation, descriptions of soils,
management rules, etc.) and interprets outputs.

Configures sub-models to make a dynamic model.fidsrihat the dynamic model is complete and
scientifically meaningful. The modeller and simidatuser may be the same person at the same
time.

Implements the quantities, rate equations and sward submodel ascamponent (see section
2), using the methods provided by the protocolaimmunicate with the rest of a simulation.

Implements a version of the protocol for a paricaperating system.

Common Modelling Protocol -3-

2. Definition of entities within the protocol
2.1 Components

A component is the entity within the protocol that encapsudaaesubmodel. The interface of a component is

made up of:

« aname. When a component belongs to a systemintiéaion can refer to it by a fully qualified nartieat
includes that of it's parent system.

« aunique ID, used to denote the component in messag

« properties (as defined below).

« event handlers (as defined below).

2.2 Properties

Properties encapsulate the quantities of each sudlmbhe interface of a property includes:

+ aname.

- anID, used to denote the property in messagesgalies for properties are unique within components
that the pair (component ID, property ID) uniquielgntifies a property within the simulation.

« atype. The type of a property determines the fsedlaes it may take and the units of those valudégre
applicable. The type must be either one of a sptiafitive types (see Figure 2.1 and section 6.1) or else
an array or record structure ultimately composethee primitive data types.

« avalue.

Two distinct kinds of properties are identifidakiving properties encapsulate driving variables, i.e. quantities
which are stored externally to a given componettich must be known in order to compute the conemb's
logic. All other properties (i.e. those that arerstl by the component) aoe/ned properties.

Owned properties must have at least one of theviitlg attributes:
Writeable Other components may request that the value oftaale property be changed.

Readable Other components may request the value of a reagmbperty, i.e. other components have read
access to these properties.

Driving properties may receive zero or more valiues different components. A component determines
whether the number of values returned to it byréist of the simulation is valid.

Driving property registrations follow the regisitat scheme that is used for events as outlinedaméext
section.

Unqualified property names must be unique withendbmponent to ensure there is no ambiguity. Thigies
that a property may only be registered once.

Common Modelling Protocol —4-

Owned Property Property
6-m | +IsReadable logical +Name char(]
+IsWriteable logical +ID integer

+Units char]] |
+Value

1 .

Component o— Driving Property
g B
* | +Name char[] 1 -MinSources 0...c0
+ID integer -MaxSourcesO0...%
*>—
1
Manager 1
* | Event Handler
System Event — | Type
+Machine charf] * | Event Publisher +Name charf] @ +Name charl]
+ID integer
A {Manager = null}
| Defined Type | | Primitive Type |
Boolean
x

Short Int
Integer
Long Int
Single
Double
Char

N

Unicode

Figure 2.1. Class diagram describing the relationship betwestities in the modelling environment

2.3 Events and event handlers

Events are used to signal the occurrence of activitiesnfutations) and pass instructions between compg®nen
Events have:

+ aname

. atype All events must have a record type; consequeabh parameter of the event takes a name.

. datacontaining the values of the event's parameters.

Event handlersin the protocol encapsulate component logic éllecomputations that alter the state variables

of the submodel encapsulated by the component)intégace of an event handler includes:

- aname.

- an D, used to denote the event handler in messHyeslues for event handlers are unique within
components so that the pair (component ID, harBlpuniquely identifies an event handler within the
simulation.

« atype. The type of an event handler is the santieeatype of the data within the events that itdies.

Components may register event publishersin one of three ways:

Unqualified or partly-qualified name Events pubédhwill go to any event handler that matches the
name and type.

Fully-qualified name Events published by this handlill go to the unique event
handler that matches the name and type, assunang #xists.

Unqualified name + integer component ID The compoh® is read as a destination for events. Events
published will go to the unique event handler deddiy the
component and handler name, assuming that it extistdas a
matching type.

Common Modelling Protocol —-5-

« Itis an error to give both a component ID and alifjed name.

« Itis always permitted to register an event pulaisiith no matching event handler. If the sendemte/¢o
ensure that the event is handled, it must requésioaviedgement and count tbemplete messages as they
come back.

2.4 Systems and simulations

A system is a component that groups related componentsnadtBimulation. In addition to the usual attrisut
of components, a system has:
« zero or more components within it who may be system

All components of a simulation are implemented @ingle machine and in a single address space{egab-
systems, for which this is optional).

System

P —

System Component| | Component

Machine
boundary

Component Component

Figure 2.2 An example of a typical structure containing systemd components

A simulation is the execution of a model within the protocolsifulation is equivalent to its top-level system;
when its behaviour as a system is under consideratiwill be referred to as ttemulation system.

Every component - except the simulation systena-neember of exactly one system. Systems are tireref
arranged in a hierarchy or tree, with the simulaigstem at the root. The system that containgrgpooent
performs a number of tasks relating to that compurikis referred to as the system thanages the
component.

2.5 Messages

M essages are the means by which information and requestpassed between components and systems as a
simulation is computed. Messages are entitiescraicontain events; events are passed within messabere

is a defined set of 30 messages, each of which kpscific set of data defined that compose thesages(see
sect. 4). A component that receives a messagesremute some of it's own internal logic (which mesult in

the component sending further messages); or itbmagquired to send particular messages as a naaypdat
response.

Messages that are sent from components are fiestived by the owning system. This system is then
responsible to route the message to its owner @wbthe other child components.

Sections 3 and 4 of this document describe thefsaessages and the way that components use medsage
carry out all the tasks necessary to execute aaiion successfully.

Common Modelling Protocol - 6—

3. Tasks performed using the protocol
In order to support the execution of dynamic modlks protocol must carry out the following setasks:

Initialisation of a simulation

Termination of a simulation

Computation of a time step

Transmission of current values of a driving propert
Changing the value of another component's owneplguty
Transmission of an event

Transmission of an error message

Recording the current model state (“checkpointing”)
Registration by a component of a property or event.
10. Removal by a component of a property or event tegion
11. Addition of a component to a system

12. Removal of a component from a system

13. Deactivation of a component within a system

14. Activation of a component within a system

15. Obtaining information about components, properiesvents

CoNooOkr~wWNE

Each task is carried out by means of a sequences$ages between components and/or protocol manager
Sequence diagrams for each task are given in ssc3id-3.10. The contents of the messages areisigt 0
section 4 of this specification.

Common Modelling Protocol —-7-

3.1. Initialisation of a simulation

Protocol implementations will support three difiereources for initialisation information:
(a) the simulation user via an interface;

(b) the component itself, i.e. default values maybed; and

(c) other components in the simulation.

To support this, two distinct stages are employetthé initialisation process. A single-stage predssiot
feasible because of the need to allow initialisatidormation to be taken from other components

The constructor for a component includes the patensielD and Parent ID. This information is needéed
construction time so that theit1l message can be directed correctly.

Initialisation

Sequencer Simulation
System

' ccreate» System
! >

*all}:initl T

*[all]:register

1. The newly created system starts by

T
1
o
passing oneequestComponentI D '

requestComponentID

message for every sub-component to the
simulation system.
2. The simulation system responds with

returnComponent|D

«create» I COmQOnent

returnComponent! D messages, bearing
unique component IDs.

3. On receipt of these, the system creates
its sub-components (with ID) and then
senddnitl messages containing SSDL.
4. The sub-components respond by:

(i) carrying out any initialisation logic
that does not require information from
other components (this may include
creating sub-components and sending
initl to them); and

(ii) registering properties and events.

5. The system must require
acknowledgement ahitl.

*[all}:ini 1

T

*[all]:register

complete(initl)

all initl's
complete?

complete(initl) _<_|

6. Once all thénitl messages are
acknowledged simulation-wide...

I::I all initl's
complete?
init2

7. init2 messages are sent recursively
through the simulation.

*[all}:ini

complete(init2)

8. When processinignit2, components
may request information from other
components.

9. The system must require
acknowledgement ohit2.

I:y:l all init2's
complete?

complete(init2)

.

commence all init2's

complete?

10. Once the simulation system receives
acknowledgement of all iigit2
messages, it sendsa@ammence message
to the sequencer service.

_D__

Common Modelling Protocol - 8-

Notes

« This sequence diagram describes the initialisatfansystem directly contained within the simulatio
system. The initialisation process operates reeelssacross the tree of systems that forms the evhol
simulation. The diagram also assumes that coafridne-step execution has been delegated to a
"sequencer" component.

+ The simulation system (top-level system) must leaterd before the initialisation process can baieid.

« All user-provided initialisation information is primled to a component in a single message as fragnfien
SDML. The fragment must conform with the <comporegiement in the SDML definition set out in
section 7.1.

- A sequencer component is guaranteed to be reaggéive thecommence message. In the absence of a
sequencer, the simulation system must submitdghenence message to itself.

« A component must know its ID before a message eambted to it. Components are therefore passéd the
ID values as part of the creation process, noavigessage.

« Component IDs must be unique throughout the sinaaso that the destination of every message
acknowledgement is unambiguous. The simulatioregy$s therefore given the responsibility of alldogt
IDs for all components.

« After components register their published eventsdriving variables, their owning system will, dugi
init2, need to do querylnfo messages to find al¢bnnections for the published events and driving
properties.

- Duringinitl: Components may carry out initialisation logicttdaes not require information from other
components. Properties and events can be registere

- Duringinit2: Components may request information or set vatfiesher components during this stage.
During initl and init2 the date and time of the glation is unknown and therefore any computatians o
other tests requiring the value of “current time™aurrent time step” cannot be performed. Date tameé is
known during the first time step of the simulation.

Messages used

requestComponentl D returnComponent!I D initl init2
register commence complete

Common Modelling Protocol -9-

3.2. Termination of a simulation

Termination

Simulation System Component
System

terminateSimulation

T
1

1. Any component initiates termination !
by issuingter minateSimulation to :
the simulation system.

2. The erminateSimulation message is
passed back to the simulation system.

3. It sends aotifyTermination message
to all its components.

4. Components respond to
notifyTermination by performing any
final processing.

5. Systems must also send
notifyTermination to the components
that they manage.

6. On acknowledgement of each
notifyTermination message, the
system destroys the acknowledging

terminateSimulation | |
1

*[all comps]:notifyTermination

*[all comps]:notifyTermination

complete(notifyTermination)

«destroy» ’) J (

complete(notifyTermination) all destroyed?

component.
1
7. Systems only acknowledge «destroy» »‘<
notifyTermination once all their sub-
components have been deleted.

all destroyed?

8. At the end of the process, the
simulation system remains without
any components.

Notes

- Termination of a simulation is similar to a seridé£omponent deletions. However when a simulatson i
being terminated, theause messages used in component deletion might beiibut a destination and so
not be acknowledged. Termination is therefore diesdras a distinct use case.

Messages used
terminateSimulation notifyTermination complete

Common Modelling Protocol —-10-

3.3. Computation of a time step

Every simulation must have a component that previlesequencingervice. This sequencer component
registers a set of event publishers @bhquenced eventthat instruct other components to carry out the
computations that together constitute the integnadif the simulation over a time step.

The sequenced events are ordered, in the sensattfagiven sequenced event is always sent befaral]el
with, or after each other sequenced event as atipés computed.

The Execute Phasdssk is an endless loop that is started in regptinacommence message. An iteration of
the loop will typically correspond to a time step.

Time Step
Sequencer Simulation Component || Component || Component
System 1 2 3
T T T T T
| | 1 | 1
1. The sequencer publishes the publishEvent(foo) 1 1 1 1
first event(s) in the“exelcunon "pubnshEvem(bar) [_]event(foo) : ; .
order, in this case “foo” and T event(bar) 1 1
“ " 1 : ~_
bar”. They are routed to all | ovent(bar) X
components that have |
subscribed to that event. ! Bl complete(event)
2. The sequencer must request : Ll T
acknowledgement. 1 1 complete(event)
| 1 |
| 1 |
| 1 |
| H 1 |
complete(publishEvent) all bar complete? complete(event)
i | i
1 1 | 1
| 1 | 1
1 complete(publishEvent) | all foo complete? : : :
| 1 | 1
| 1 | 1
3. When all acknowledgements 1 1 1 1
have arrived, the next set of all published events ! ! ! !
: complete? 1 | 1 1
parallel events is sent out. 1 1 1 1
publishEvent(foo2) 1 1 1 1
4. When all events in the list have : : : :
been completed, the sequencer 1 1 1 1
returns to the head of the list : | ' : '
and repeats. 1 1 1 1 1
Messages used
publishEvent event complete
As an example of how this scheme works, considesimulation on S Weath
the right. In this simulation, the sequencer pilblish a total of four | | g moiencet T
events each time step, in three ordered groups: :ig;e;ggf;;gfeen
(a) “startup” to Weather and Pasture;
(b) “intercept” to Soil Water, at the same time as Soil Water Pasture
“green” to Pasture; intercept, execute startup, green, execute
(c) “execute” to Soil Water and Pasture.
Cashbook
The sequencer service has no interaction with gshook
component.

Common Modelling Protocol -11-

3.4. Transmission of driving property values

The driving properties of a component are thosevitich a value or values are obtained from another
component. The protocol supports cases where aaeogr more than one values for a driving propargy
returned.

Get Driving Property Value

Component System Source Source
Component 1 |[Component 2
: : T T
1 1
. . 1
1. The requesting component issues | ! !
i getValue 1 1
getValue to its system. L 1 | queryvalue | 1
1 1
2. The system managing the component . [queryvalue 1
identifies the source(s) for the driving 1
variable and sendgpueryValue to ! replyvalue

returnValue [] [
1 N replyValue

each source.

3. Each source directsreplyValue returnValue
message to the requesting component. ;l all complete

complete(getValue)

4. The system must acknowledge the |;| T
getValue message, but only after all
returnValue messages have been
sent.

g ------

Notes

« The above sequence shows the minimal behaviouireglj(r her eturnValue message(s) may be sent to
other components that use the property as a driver.

+ When the number of sources found by the systemtisfthe valid range for the property, the comptne
must generate a fatal error.

- The arrival of aqueryValue message for a property that is not readable cautsal error.

+ When the source and destination components rasidiéérent systems, thgueryValue andreplyValue
messages are passed along the path of systemshdtveetwo managing systems. Because systems are
nested, this path is unique.

Messages used
getValue queryValue replyValue returnValue complete

Example:

Consider two components in the same systeompl has a driving property, andComp2 owns a property.
Compl, Comp2 and the twoc properties each have a registration ID. The patow@nager that lives within the
system has worked out th@abmp2.x acts as the only source f6ompZl.x. Internally,Comp1.x is denoted by
the pair (98,4) an@€omp2.x by (99,33).

System =97

Compl =98 Comp2 =99

Drivers: Owned: Drivers: Owned:

Xx=4 a=1 e=11 x=33

z=5 b=2 g=22 y=44
c=3 z=55

Figure 3.1. Example for getting driving property values

Common Modelling Protocol —-12-

(&) WhenCompl issues a request for the valuexpit sends From=98 To=97

getValue(id=4)
(b) System receives this. It holds the driver-source From=97 To=99
relationship and so responds by sending queryValue(id=33,
requestedby98)
(c) Comp2 receives this. It then addresses its answer to theFrom=99 To=97
system that made thieryValue request. replyValue(queryicemsg ID ofqueryValue,

type="<type kind=string/>",
value="quick brown fox")
(d) System receivegeplyValue. It looks up the (previously From=97 To=98
stored) destination component and registrationdidgr returnValue(compid=99,
thequeryidfield and sendseturnValue message to id=4,
Compl. type="<type kind=string/>",
value="quick brown fox")

(e) Compl receives this and can tell frachwhich driving
property to assign the value to.

Common Modelling Protocol - 13-

3.5. Changing another component's owned property

No component may directly change the value of aratbmponent's owned property. As a result thetitvg’
of owned property values must be implemented as@uést to change” that may be rejected by theviege
component.

Alter Owned Property

(a) The property is present in the simulation

Requesting System Owning
Component Component
T T T
1. ArequestSetValue message :
containing a previously registered ID requestSetvalue !

is sent to the managing system. L
2. The system identifies the component :
that owns the property to be altered 1
and sends querySetValue message : i replySetValueSuccess
to it. | notifySetValueSuccessl |
3. The owning component responds with I:' T
1 1
1 1

querySetValue

areplySetValueSuccess message.

4. The system converts this to a
notifySetValueSuccess message
informing the original sender whether
the operation succeeded.

(b) The property is not present in the simulation

Requesting System
Component

notifySetValueSuccess

1. ArequestSetValue message
containing a previously registered ID
is sent to the managing system.

2. The system responds with a
notifySetValueSuccess message
informing the sender that the property
is not present.

T
ﬂ requestSetValue
—

1

1

1

1

1

1

1

1

Messages used
requestSetValue querySetValue replySetValueSuccess notifySetValueSuccess

Notes

- If the name corresponding to the registration IBsea in theequestSetValue message is ambiguous, or if
the property that it denotes is not writeable,rdeeiving system must generate a fatal error.

Common Modelling Protocol - 14—

3.6. Transmission of an event

1. A component sendspaiblishEvent
message to its system. The system's
PM sendsvent messages to all
components that have subscribed to
the event.

2. Acknowledgement is, in general,
optional; if requested, it is routed in
the usual way.

3. ThepublishEvent message is only
acknowledged once thewent

messages have been acknowledged.

Messages used
publishEvent event

Common Modelling Protocol

Transmit Event

Component System

T T

1 1

1

1

publishEvent 1
1 | event
[event

T

1

1

complete(publishEvent)

Subscribing

Subscribing

Component 1

Component 2

complete(event)

complete(event)

]

— 15—

complete

all complete

3.7. Transmission of an error message

Errors are sent using a distinct message. Thigvalfor the error to be transferred at any timernfythe
simulation construction or processing.

There are two use cases: one for a non-fatal (ngymirror, and the other for a fatal error.

Errors
(a) Non-fatal error
Component System Simulation System

| |

| |

| |

| |

| |

| |

error |

|

i

|
|
|
|_| error
T
|
|
|
|
|
|
|
|

, (b) Fatal error
1. Upon receipt of a fatal error the

simulation system must request
termination of the simulation. See
section3.2 Termination of a

simulation. Component System Simulation System

|
|
|
|_| error
T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

error

| terminate
*[all comps]:notifyTermination

I

Messages used
error notifyTerminate

Common Modelling Protocol - 16—

3.8. Recording and restoring the model state
3.8.1. Recording the model state

The process of recording the current state of alsition, or part of a simulation, at some pointidgiits
execution is referred to aheckpointing. SDML fragments or scripts are used to recordctireent state of a
component so they can be used to initialise theesaamponent in another simulation.

Any component or system component may be checlguimcluding the simulation. Before a checkpasnt i
recorded, the simulation must be paused to enkatélte states of all checkpointed components@sistent.
The checkpoint process involves using the sequéeseribed in section 3.4. ThgetValue message is used to
retrieve the standardate property of the component or the system thatiisgoeheckpointed. Since the
definition for astate variable specifies that it includes any statermfation from child components, the system
being checkpointed must have a special handlegiferyValue(state) messages.

Checkpointing using the Checkpointing
getValue message.

Checkpointer OwningSystem SystemToCheckpaint OwningSystem Component
Once the simulation has pauseSimulation |
been paused, the D

checkpointer uses a
registered driving variable
for thestate property of the
system being checkpointed. queryValue(state)
Then it issues getValue
for thestate driver.

complete(pauseSimulation)

getvalue(state) |
1

*each[child component]:registerStateDriver()

The getva_l ue iS *each(child componenl]:gelVaIue(?lale)

passed to the parent of | queryValue(state)

the Checkpointel’. i i replyValue(state) ‘ ‘
]
]
]

returnValue(state) I et "
all returne:

The checkpointed system
uses driving variables for all !
it's child components to

retrieve thestate values of
the children. !

complete

all returned

replyValue(state)

returnValue(state) 1

1
1 complete
H

[
As each driver is returned !

]
thestate value is i
constructed.

Thestate value is returned
to thecheckpointer and
the simulation is resumed.

Messages used

pauseSimulation getValue replyValue complete
resumeSimulation queryValue returnValue
Notes

« The SDML fragment returned by each component asdhe of thestate property must be a valid
<component> or<system> elementin SDML as described in section 7 of tlisument. i.e. be capable
of initializing the component.

« The driving variables used during the checkpointpss must be registered if they have not already b
registered.

Common Modelling Protocol —-17-

3.8.2. Restoring the model state

The process of restoring, or reinstating, the si&#dl or part of a simulation is carried out bhe tonverse of the
checkpointing process.

The process used to restore state property is described in section £Hanging another component's owned
property The SDML however can be used as the initialigafitw the component in a new simulation script.

Since the definition for aate variable specifies that it includes any statermi@tion from child components,
the system being restored needs to have a spegidler forquer ySetValue(state) messages.

Restoring a checkpoint Reinstate Checkpoint
Component ’ OwningSystem ‘ SystemCheckpointed ‘ OwningSystem ‘ Component

pauseSimulation i
The component pauses the

simulation. complete(pauseSimulation)

The component uses a requestSetValue(state)
registered property setter ‘ ‘
variable to send thetate

SDML to the system that
was checkpointed.

querySetValue(state)

*each[child]:registerPropertySet()

*each[child component]:requestSetValue(state)
[H

‘ ‘ querySetValue(state)

The system Component replySetValueSuccess
being restored may need to
register property setters for
it's children all returned

notifySetValueSuccess ‘

replySetValueSuccess

notifySe'[VaIueSuccess‘ F

resumeSimulation J\

When the
notifySetValueSuccess
message returns, the
component sendsrasume
message.

Messages used

pauseSimulation requestSetValue replySetValueSuccess complete
resumeSimulation querySetValue notifySetValueSuccess
Notes:

1. |If the structure of the sub system being restosddund to be different to the structure that was
checkpointed, then a fatal error will be issued.

Common Modelling Protocol - 18-

3.9. Changing the model structure
3.9.1. Registration of a property or event
Register Property or Event

(a) During simulation construction

System Component

register

1. The requesting component sends a
register message to its system.

-________-:I__

(b) After simulation construction

Managing System Component || Sub-System Sub-System
System

T
|
register ﬂ

notifyRegistrationChange notifyRegistrationChange

T
|
|
|
|
1. After simulation construction, the :
system also sends a \
notifyRegistrationChange message !
to its parent system and to any sub- u
]
|
1

systems that it manages. This message
propagates through the simulation. : :
1 1

T

|

|

|

: notifyRegistraIimChar{ge
. |
|

|

1

Messages used
register notifyRegistrationChange
Notes

« notifyRegistrationChange messages are propagated to every system in tikasion. This enables each
system to keep track of the properties and evemdlbes to which it may need to rowdaeryValue,
requestSetVValue andevent messages.

Common Modelling Protocol —-19-

3.9.2. Deregistration of a property or event

Deregister Property or Event

Managing System Component Sub-System
System

deregister

T
1
1
1
_notifyRegistrationChange notifyRegistrationChange
1
1
1
1
1

deregister message to its system.
2. The system records the deregistration.
3. It also sends motifyRegistrationChange
message to its parent system and to any
sub-systems that it manages. T

T
1
1
1
1
1. The requesting component sends a 1
1
1
1
1

]

Messages used
der egister notifyRegistrationChange

Common Modelling Protocol - 20—

3.9.3. Adding a component to a system

Add Component

Simulation System Sub-System
System

addComponent

1
requestComponentiD

1. The system receivirmdComponent passes a
reguestComponentl D message back to the
simulation system.

2. The simulation system replies with a ;
returnComponent! D message bearing a unique 1
component ID. '

3. On receipt of these, the system creates the new !
component (with ID) and then sends itiaitl 1
message containing SSDL. '

4. The new component responds by: !

(i) carrying out any initialisation logic that does 1
not require information from other components; '
and !

(ii) registering properties and events. 1

5. Component addition will normally take place |_:_|

1
1
1
1
1
1
1
1
1
1
1
1
1
1

| returnComponent! :

«create» Component

h 4

initl 1

*[all]:register

*notifyRegistration
Change *notifyRegistrationChange

after simulation construction, so
notifyRegistrationChange messages are sent
as part of registering each property and event.

complete(initl)

6. The system requires acknowledgementitf.

7. Once thenitl message is acknowledged, the
system sends dnit2 message.

8. The system requires acknowledgemenhi®.

init2

complete(init2)

n

.E___.I_._______

Messages used
addComponent requestComponent| D returnComponent| D initl

init2 register notifyRegistrationChange complete
Notes

- Addition of a single component to a simulation Isesimilarities to the initialisation process. Thaimpoint
of difference is that thmit2 message is sent immediately on receipt of the@eladgement thahit1 has
been processed; in the initialisation processirth@ cannot be issued until all the other componentkén
simulation have completed their first initialisatistage as well.

- Attempting to add a component to a component thabt a system causes a fatal error.

Common Modelling Protocol —-21-

3.9.4. Removing a component from a system

Delete Component
Sequencer System Component

1. The system owning the component to deleteComponent

be deleted receives the message.

2. ApauseSimulation message is sent; pauseSimulation
acknowledgement must be requested. |

3. Once the simulation is known to be ! !
paused, the system sends a complete(pauseSimulation)
notifyAboutToDelete message to the
component. Acknowledgement is
mandatory.

4. It responds by carrying out any
cleanup logic & acknowledging.

5. The system then invalidates all
registrations from the component.
notifyRegistrationChange messages
will be triggered.

6. Once the system has finished the
deregistrsation, it deletes the
component from memory.

7. The simulation is resumed.

notifyAboutToDelete

1
| complete(
1 notifyAboutToDelete)

*[all]:notifyRegistration
Change
P —

«destroy»

Xo-----s

resumeSimulation

._|:__________________

Messages used

deleteComponent pauseSimulation resumeSimulation notifyAboutToDelete
complete

Notes

« ThenotifyAboutToDelete message is required to force the component touxeay final logic. Because
this may involve communication with other composeitthas to happen before deregistration.

Common Modelling Protocol - 22—

3.9.5. Deactivating a component

All components possess a standard Boolean propamgdactive. When the component is active, this property
takes a value of TRUE. THhgeactivate Componesequence diagram below describes the case wteere th
activity property is TRUE. If it is already FALSE, no chasgde registrations will be made.

Deactivate Component

Sequencer Simulation Component
System

1. Thedeactivate message arrives at the
system managing the component (in
this case, the simulation system).

deactivateComponen
pauseSimulation

2. Apause message is propagated to the .
sequencer; acknowledgement must be complete(1
requested. pauseSimulation) 1

3. Once the simulation is paused, the |querySetValue(active,FALSE)

system sets thactive property of the
target component to FALSE.

4. Once this is complete, the system
invalidates all registrations from the
component, isolating it from the “allnotifyRegistrationChange
simulation.
notifyRegistrationChange messages
will be triggered.

5. AresumeSimulation message is then
propagated to the sequencer service to
re-start the simulation. This time
acknowledgement is not required.

Messages used

deactivateComponent pauseSimulation resumeSimulation requestSetValue
notifySetValueSuccess notifyRegistrationChange complete

replySetValueSuccess

resumeSimulation

._|:____

3.9.6. Activating a component

TheActivate a Componesequence diagram describes the case wheaetianate message arrives at a
component that has ig&tive property set to FALSE. If it is already TRUE, remistration messages will be
issued by the target component.

Activate Component

System Component

T T

1. Theactivate message arrives at the activaeComponent .| . '
system owning the component. auerySetvaluetacive TRV !

2. It sets the target componeratsive
property to TRUE.

replySetValueSuccess

1

1

1
3. The component re-registers all the |T|

properties and events that were Lo nofyRegistation
deregistered when it was deactivated.

notifyRegistrationChange 1
messages will be triggered.

Messages used

activateComponent requestSetValue notifySetValueSuccess register
notifyRegistrationChange

*[all]:register

Common Modelling Protocol - 23—

3.10 Obtaining information about properties, compon ents or events

This sequence diagram shows the flow of messagen imformation about a property or event (say 7&")
enquired for in a simulation with the following stture:

Simulation System

Systeml Compé (has x)
Compl System2
Comp7
Comp4 (has x)
Comp8 (has x)
Comp5
Comp3 (has x) ~omp>

Obtain Entity Information

Simulation | | System2 | | System1 | | Compt1 |
1

1

| | |

! ! querylnfo(x) r-l
|

mlpfvlm‘o{x) !

querylnfo(x)

1. The requesting component sends a I

querylnfo message to its system. ! |
2. The system provides information
about any matching entities using . mm'ﬂﬂ“-@wﬂm)hu

returninfo... - !) - | |
refyrn III() compi X
3. and propagates the query to the syste |

|
that manages it and any sub-systems.]
returninfo(comp8 x) .
4. These systems recurse the process. o ! Qﬂm@m&ﬁj

5. Note how the simulation system
responds with one message per
matching entity. |

Messages used
querylnfo returninfo

Notes:

1. When a child system receivesjaerylnfo it will not send it back to the parent that sént i

Common Modelling Protocol — 24—

4. Protocol Messages

4.1. Summary of protocol messages

The following is the table of valid message types:

MsgType Message Name Sent by Received by Acknowledg

Completion

1 activateComponent Component System managing component Optional

2 addComponent Component System Optional

3 error Component System managing component Optional

4 commence Simulation system Simulation system (sequencer) ioDat

5 complete Component Component Never

6 deactivateComponent Component System managing component Optional

7 deleteComponent Component System managing component Optional

8 deregister Component System managing component Optional

9 event Component Component Optional

10 getValue Component System managing component Mandatory

11 initl System Component managed by system Mandatory

12 init2 System Component managed by system Mandatory

13 notifyAboutToDelete System Component managed by system Mandatory

14 notifyRegistrationChange System Systems Optional

15 notifySetValueSuccess System Component managed by system Optional

16 notifyTermination Simulation system, System, component Mandatory

system

17 pauseSimulation Component Simulation system (sequencer) Optional

18 publishEvent Component System managing component Optional

19 querylnfo Component System Mandatory

20 querySetValue System Component Futile

21 queryValue System Component Futile

22 register Component System managing component Optional

23 not used

24 replySetValueSuccess Component System Optional

25 replyValue Component System Optional

26 requestComponent| D System Simulation system Futile

27 requestSetValue Component Component Futile

28 resumeSimulation Component Simulation system (sequencer) Optional

29 returnComponent| D Simulation system Component Optional

30 returninfo System Component Optional

31 returnValue System Component managed by system Optional

32 terminateSimulation Component Simulation system Never

Notes:

« Anything sent by a component can be sent by arsyste

- Acknowledgement of a message is "futile” when apoment is required to respond to it by replyingwvat
different message. For example, theerylnfo message must generateetur nlnfo message in reply, so
acknowledging this message is redundant.

« "(sequencer)" denotes that the simulation systemsisonsible for sending or handling a messagéhbut
this responsibility will usually be delegated tsexqjuencer service.

« Integer message fields are all 4 bytes in length.

3

Common Modelling Protocol

In some of the tasks discussed in section 3, tatinp of pause messages must be acknowledged.

— 25—

4.2. Protocol messages in detail

This section contains a description of each prdtomssage, setting out:

- the characteristic structure for its message datgponent;

- which entities send the message and under whattmorlit is sent;

- which entities receive the message and the respibresy, required of them.

Where a response is not otherwise specified, @msydtat receives a message must route it toward its
destination. In this case the "From" field of thessage must be preserved, so that when the messags at
its destination the "From" field gives the origisa&inder of the message.

Name: activateComponent

MsgType: 1

Summary: Reverses de-activation of a component (seel¢hetivateComponent message).

Message data: component char[] Unqualified name of the component to bévateéd. Refer to sect.
2.1

Sent by: Components.

Sent when: At any time.

Received by: System managing a component.

On receipt: The receiving system must set the nominated conmi@rextive property to TRUE using the
Alter Owned Propertgequence diagram set out in section 3.5. If tmeimated component was
previously inactive, it must respond by re-regisigits properties and event handlers.

Name: addComponent

MsgType: 2

Summary: Adds a new component to the system martagtte receiving system.

Message data: sdml char[] A SDML fragment containing initialisationformation for the
new component. The fragment must conform to either
<component> or <system> element in SDML (see sedti).

Sent by: Components.

Sent when: At any time.

Received by: Any system.

On receipt: The receiving system must respond by sendinggaest Componentl D message to the system

that manages it (to itself if it is the simulatigystem). Sect. 3.9.3

Name: error

MsgType: 3

Summary: Transmits error information to the SimolaiSystem.

Message data: fatal boolean True if the error was fatal and the simulatioost be terminated.

Text containing the error details.

message char[]

Sent by: Components.

Sent when: At any time.

Received by: Any system.

On receipt: If the receiving system is not the Satian System, the message must be resent towtrsng
system. The Simulation System is responsible foniteating the simulation if the value faftal is
True.

Common Modelling Protocol — 26—

Name: commence

MsgType: 4

Summary: Requests the commencement of the first step.

Message data: (None)

Sent by: Simulation system

Sent when: During initialisation, once alhit2 messages sent by the simulation system have been
acknowledged.

Received by: Component that implements the sequeseceice (may be the simulation system).

On receipt: The component must begin to execut&xieeute Phasesequence diagram set out in section 3.3.

Name: complete

MsgType: 5

Summary: Informs the receiving component that asangs it sent earlier has been processed.

Message data:
Sent by:

Sent when:

Received by:
On receipt:

ack-id integer Message ID of the message being acknowte@getion 9.1.1)

Components and systems

Whenever an entity receives a messdbehgi acknowledgement flag set, it must respond by
submitting a correspondirgpmplete message once it has completed processing of idfiealr
message.

Any component or system

The response depends on the type anéissage being acknowledged and whether the message
received by the simulation system, another systeenammponent:

Message acknowledged Received Response
by required
initl Simulation If this is the lastnitl message acknowledged, then
system init2 is sent to all components managed by the

simulation system.

Other system If this is the lastnitl message acknowledged, then the
initl message from the system that manages this
system is acknowledged.

init2 Simulation If this is the lastnit2 message acknowledged, then
system commence is sent (either to the simulation system or
the sequencer service).

Other system If this is the lastnit2 message acknowledged, then the
init2 message from the system that manages this
system is acknowledged.

notifyTermination All systems (a) The component that sent the ackedgément is
deleted.
(b) If this is the lashotifyTermination message
acknowledged, then theotifyTer mination
message from the system that manages this system
is acknowledged.
getValue Component Signals to the component that all vathaee been
returned in response to the query. The response is
handled internally by the receiving component.
Other messages Component Handled internally byetteiving component

Common Modelling Protocol - 27—

Name: deactivateComponent

MsgType: 6

Summary: Deactivates a component

Message data: component char[] Unqualified name of the component to bectieated

Sent by: Components.

Sent when: At any time.

Received by: System managing a component.

On receipt: The receiving system must set the nominated conmi@rextive property to FALSE using the
Alter Owned Propertgequence diagram set out in section 3.5. Themystast then invalidate
any registrations of that component’s propertied erent handlers and send out
notifyRegistrationChange messages to inform the rest of the simulationities done so.

Name: deleteComponent

MsgType: 7

Summary: Informs the receiving system that it i;itate removal of one of the components it matag

Message data: component char[] Name of the component to be deleted

Sent by: Component.

Sent when: At any time.

Received by: Any system managing a component.

On receipt: The receiving system must respond by sendipguseSimulation message; once this is
acknowledged, it must sematifyAboutToDelete to the component to be deleted.

Name: deregister

MsgType: 8

Summary: Invalidates the registration of properéird/or events.

Message data: kind integer 1 denotes a driving property

Sent by:
Sent when:
Received by:
On receipt:

2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
7 denotes a component
8 denotes a system component
9 denotes a property set request
id integer Registration ID of the property or evenb&deregistered. This
field should be 0 if th&ind field denotes a component or system.

Component.

At any time.

System managing the sending component.

The receiving system invalidates thygsteation of the given property or event. If #ied field is
7 or 8, all property and event registrations f& tomponent or system are invalidated.
The receiving system must also semibtfyRegistrationChange message to
(i) the system that manages it, if any, and
(i) any sub-system that it manages (includingadbmponent that sent tloer egister message, if

applicable).

notifyRegistrationChange messages are nsgént if the deregistration happens while the xéegi
system is engaged in processingrahl message.

Common Modelling Protocol — 28—

Name:
MsgType:
Summary:
Message data:

event

9

Notifies a component that subscribe tevamt that the event has occurred.
id integer Registration ID of an event handler théisstibed to the event
publishedBy integer ID of the component that sent thablishEvent message that

caused thigvent message to be created

type char[] DDML <type> element describing the typettoé parameter data.
The type of the parameters must be a record, seduh
parameter has a name.

params variant Parameter data, laid out according taypefield.
Sent by: System or component
Sent when: (i) Sent when the system receivegublishEvent message from one of its components. One
publishEvent message may result in zero or mevent messages being sent.
The acknowledgement flag of ement message is only set if the triggerimgblishEvent
message has its acknowledgement flag set.
(ii)A component may send @vent message to another component’s event handleyadirae.
Received by: Any component.
On receipt: Handled according to the internal lagithe component.
Name: getValue
MsgType: 10
Summary: Passes request for a driving propertyevirhm a component to its system for routing
Message data: id integer Registration ID of the driving propertytbé requesting
component for which a value is requested.
Sent by: Components.
Sent when: At any time
Received by: System managing the sending component.
On receipt: The receiving system identifies all poments that provide values for the driving proparid

sends @yueryValue message to each.

Acknowledgement of thgetValue message must be requested. The receiving systémundl it
has routed all the correspondingur nValue messages to the component before sending the
complete message. The acknowledgement thus signals tmthpanent that all values have
arrived in cases where a variable number of vategbe returned.

Common Modelling Protocol - 29—

Name:
MsgType:
Summary:
Message data:

initl
11
Instructs a component to carry out thet fiart of its initialisation.

sdml char[] SDML <component> or <system> element caoria
initialisation information provided by the simulai builder. See
section 7 for SDML.

fgn char[] Fully-qualified name of the component beinigjialised

inStartup boolean TRUE if the message is sent during sinafatdnstruction, i.e.

the processing dfitl messages as part of the initialisation of the
simulation. (At this time, other components carmguaranteed
to be in existence.)

FALSE otherwise, including when it is sent as pdrdding a
component to the simulation.

Sent by: system managing a component.

Sent when: In response to eeturnComponentl D message, immediately after the system has créfaged
component.

Received by: Newly created component.

On receipt: The component carries out the first phits initialisation, including processing oftialisation
information in thesdmilfield and registration of all properties and egeiithe component cannot
rely on any other component or property being prefsethe simulation whilénitl is being
processed.

Name: init2

MsgType: 12

Summary: Instructs a component to carry out thersgépart of its initialisation.

Message data: (None)

Sent by: System managing a component.
Sent when: (a) During initialisation: if the system is the silation system, when ahitl messages sent by the
system have been acknowledged; otherwise on rezkegstinit2 message.
(b) During addition of a component: upon acknowksdgnt of thenitl message sent to the
component.
Received by: Component.
On receipt: The component carries out the secortcbpds initialisation, including obtaining indlisation
information from other components.
Name: notifyAboutToDelete
MsgType: 13
Summary: Informs a component that it is about taldleted
Message data: (None)

Sent by:
Sent when:
Received by:
On receipt:

System managing component
In response tdeleteComponent, after the system has ensured that the simulaipaused.
Component
On receipt of this message, the commanest carry out any internal computation requivetbre
it is deleted (e.g. closing files).
This message must always be acknowledged.

Common Modelling Protocol - 30-

Name: notifyRegistrationChange
MsgType: 14
Summary: Broadcasts a change in the registratigmayferties and events to the rest of the simuiatio
Message data: registered boolean TRUE if a property or event has been regidt FALSE if
deregistered.
kind integer 1 denotes a driving property
2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
7 denotes a component
8 denotes a system component
9 denotes a property set request
ownerid integer Registration ID of the component that ottresproperty or event
(or the component itself Kind=7 or 8)
id integer Registration ID of the property or event.
Should be zero ikind=7 or 8.
name char[] Unqualified name of the entity that is gubject of the
notification.
type char[] If the entity is a component:
Text string giving the value of the componenhyise property
(see section 5.1)
If the entity is a property or event:
DDML <type> element giving the type and units
Sent by: System
Sent when: In response to eegister or deregister message, except during simulation constructienthe
processing ofitl messages as part of the initialisation of the Etman. (At this time,
components cannot be guaranteed to be in exisjence.
Received by: System managing the sender; alsoy&tbrss managed by the sender
On receipt: The receiving system uses the contdritee message as necessary to restructure thegait
gueryValue andevent messages.
The receiving system must also send a correspomditify RegistrationChange message to the
system that manages it and to all sub-systemsriages (excluding the sender of the original
message), thereby propagating the notificationuinghe entire simulation.
Name: notifySetValueSuccess
MsgType: 15
Summary: Notifies the receiving component whether or notevipusly sent equestSetValue message was

Message data:

Sent by:
Sent when:
Received by:
On receipt:

successful.

id integer Registration ID of the property for whiah a@teration was
requested (the component ID is in the From fielthefmessage).
success boolean TRUE only if the owning component chandesdproperty value

as requested.

Component.
In response to eequestSetValue message.
Component that sent thequestSetVValue message.
Handled internally by the component.

Common Modelling Protocol - 31-

Name: notifyTermination

MsgType: 16

Summary: Informs a component that the simulaticabisut to be terminated

Message data: (None)

Sent by: System managing component

Sent when: The simulation system sendetifyTermination messages in responsetéominateSimulation;
other systems send it in responsadtifyT er mination.

Received by: = Component

On receipt: On receipt of this message, a companest:
(a) if a system, sendreotifyTermination message to all components within the system, riegui

acknowledgement;

(b) carry out any internal computation requiredobefthe simulation is halted (e.qg. closing files).
This message must always be acknowledged. If thgponent is a system, it must not
acknowledge the message until all its sub-comparemie acknowledged their
notifyTer mination messages.

Name: pauseSimulation

MsgType: 17

Summary: Signals that submission of sequenced events shaltldintil aresumeSimulation message is

Message data:

received.
(None)

Sent by: Any component.
Sent when: At any time. Must be sent in response tbeleteComponent message.
Received by: (a) Simulation system;
(b) Sequencing component.
On receipt: (a) The simulation system routes faiseSimulation message to the component that provides the
sequencing service (if not itself).
(b) The component that provides the sequencingcgeresponds by halting the sending of
sequenced events until such time assameSimulation message is received.
Name: publishEvent
MsgType: 18
Summary: Passes an event notification from a coepio its system for routing
Message data: id integer Registration ID of the event publisher
type char[] DDML <type> element describing the typetloé parameter data.
The type of the parameters must be a record, seduh
parameter has a name.
params variant Parameter data, laid out according taypefield.
Sent by: Components.
Sent when: At any time
Received by: System managing the sending component.
On receipt: The receiving system identifies all poments that have subscribed to the event and sends

event message to each. If acknowledgement is requinednessage is only acknowledged once
all theevent messages triggered by the message have been deliged.

Common Modelling Protocol - 32—

Name:
MsgType:
Summary:
Message data:

querylnfo

19
Broadcasts a request for information ab@gmponent, property or event handler.
name char[] Name of the component, property or evendher about which

information is requested. The name may be qual{seg section
8.1). A property or event name may be "*', whichtchas all
names ("component.*" is permitted).
kind integer 1 denotes a driving property
2, 3 and 4 denote an owned property
5 denotes an event publisher
6 denotes an event handler
7 and 8 denote a component or system
9 denotes a property set request

Sent by: Component.
Sent when: At any time.
Received by: Systems.
On receipt: The receiving system checks entitigh®hominated kind that are registered with it sadds a
returninfo message to the originating component for eaclyehtit matcheaame
If the namefield may match an entity outside the systemréoeiving system must send a
correspondingjuerylnfo message to the system that manages it.
If the namefield may match an entity within a sub-system nggbby the receiving system
(excluding the sender of the message), it must asswirespondinguerylnfo message to the sub-
system.
In this way the query is propagated through theukition.
Name: querySetValue
MsgType: 20
Summary: Issues a request to set the value of anottimponent’s writeable (owned) property.
Message data: id integer Registration ID of the owned property tasbéwithin the
component to which the message is addressed.
type char[] DDML <type> element giving the type of thelue data
value variant Value data, laid out in accordance withtype of the property
Sent by: System
Sent when: In response to eequestSetValue message.
Received by: Component.
On receipt: The receiving component must respond witlealy SetValueSuccess message to inform the
sending system of the success or failure of theabios.
Name: queryValue
MsgType: 21
Summary: Requests the current value of another ooeni's owned property.
Message data: id integer Registration ID of the owned property witttie component to
which the message is addressed.
requestedby integer Registration ID of the component that guesting the value (i.e.
issued the originaletValue message)
Sent by: System
Sent when: Sent when the system receivegetly alue message from one of its components. Get¥alue
message may result in zero or mqueryValue messages being sent from the owning system. It is
the responsibility of the sending system to enshuméall recipients own the nominated property.
Received by: Component.
On receipt: The component must send eplyValue message containing the requested value to thersybat

sent thequeryValue message (given by the messafies field).

Common Modelling Protocol - 33-

Name:
MsgType:
Summary:
Message data:

register
22
Registers a property or event handler thigrsystem
Kind integer 1 denotes a driving property

2 denotes a readable owned property
3 denotes a writeable owned property
4 denotes a readable, writeable and owned property
5 denotes an event publisher
6 denotes an event handler
9 denotes a property set request
Id integer Identifier to be used in messages reldtirtye property or event
handler. All property IDs within the component mbstunique, as
must all event handler IDs and property set reqiist
destID integer Optional integer ID for a destination comgot.

« If kind=1 or 9, identifies a component that owns a prgpert
corresponding to the driving property or propegy request
being registered. Value requests for the drivirgpprty must
be routed to the nominated component only.

« If kind=5, identifies a component that subscribes to eme
being published. When the event is published, strbe
routed to the nominated component only.

. Ifkindis 2, 3, 4 or 6, ded must be zero.

- If kindis 1,5,9destIDcan equal O if the name is fully
qualified.

Name char[] Name of the property or event handler kinti=1, 5 or 9 and
destlD#0, the name must be unqualified (if not, a fataber
results.) In other cases the name must be fulllifaach

Type char[] DDML <type> element giving the type andtsrof the property
or event handler

Sent by: Component.

Sent when: At any time. Sent as part of processingitiiel message.

Received by: System managing the component.

On receipt: The receiving system registers the property. b aendsiotifyRegistrationChange messages as
detailed in the description of that message (exdaphg simulation construction).
If a duplicate property or event is requested todagstered a non fatal error is generated and
registration is not done. Refer to section 2.2.

Name: replySetValueSuccess

MsgType: 24

Summary: Issued in response Notifies the receigomgponent whether or not a previously sent

Message data:

Sent by:
Sent when:
Received by:
On receipt:

requestSetVValue message was successful.

requestiD integer Message ID of the origingluer ySetValue message
success boolean TRUE i.f.f. the owning component changedioperty value as
requested.
Component.

In response to querySetValue message.

System that sent thguer ySetValue message.

The receiving system must sendatifySetValueSuccess message to the component that
originally sent a equestSetValue message.

Common Modelling Protocol — 34—

Name: replyValue
MsgType: 25
Summary: Provides the value of a component's ptpp@ia managing system for sending to the requesti
component.
Message data: queryid integer Message ID of thqueryValue message to which this message is
aresponse
type char[] DDML <type> element describing the typelué value data
value variant Value data, laid out in accordance withtyipe of the property.
Sent by: Component that owns a property.
Sent when: In response to queryValue message
Received by: System
On receipt: When the managing system receiveslyValue from a component, it sends (not routes) a
returnValue message to the component that originally requakedalue. Thérom field of the
second message must contain the ID of the managsigm. It may also semdturnValue
messages to other components in its system thatregistered the driving property.
Name: requestComponentl D
MsgType: 26
Summary: Requests a component ID from the simulaystem.
Message data: replyto integer Registration ID of the system that will raga the new component
name char] Qualified name of the component (see below)
Sent by: System
Sent when: As part of processing aaddComponent orinitl message, before a component managed by the
system is created.
Received by: System managing the sending systdime liew component is to be managed by the simulati
system, the simulation system sends the messatgelfo
On receipt: If the receiving system is not the datian system:
it sends aequestComponentID to the system that manages it, with tiaenefield further
qualified (e.qg. if System1 receives System2.xeitds Systeml1.System2.x). This ensures that a
fully qualified name arrives at the simulation gyst
If the receiving system is the simulation system:
it generates a unique component ID and sem@ésuanComponentl D message to the system
given by theeplytofield.
Thereplytofield has to be provided separately from fnem field in the message header because
in a deeply nested simulation, theom field in the message arriving at the simulatiostesn will
not contain the ID of the system that initiated pinecess.
Name: requestSetValue
MsgType: 27
Summary: Issues a request to set the value of @anottimponent’s writeable (owned) property.
Message data: id integer Registration 1D denoting the property tesbewithin the sending
component.
type char[] DDML <type> element giving the type of thalue data
value variant Value data, laid out in accordance withtipe of the property
Sent by: Component.
Sent when: At any time.
Received by: Managing system.
On receipt: The receiving system must identify¢dbeponent and property to which tllefield corresponds.

Three cases are possible:

(a) Zero destinations: the system must send theestimg componentaotifySetValueSuccess
message witsuccesstrue.

(b) One destination: the system must sendeatySetValue message to the component that owns
the property to be altered.

(c) More than one destination: the system museissfatal error.

Common Modelling Protocol — 35—

Name: resumeSimulation

MsgType: 28

Summary: Signals that processing of sequenced gessaay recommence.
Message data: (None)

Sent by: Any component.
Sent when: At any time. Must be sent in response to acknovéetnt of anotifyAboutToDelete message.
Received by: (a) Simulation system;
(b) Sequencing component.
On receipt: (a) The simulation system routes tfesumeSimulation message to the component that provides
the sequencing service (if not itself).
(b) The component that provides the sequencingcgergsponds by re-commencing the sending of
sequenced events (assuming that they have beead)aus

Name: returnComponentl D
MsgType: 29
Summary: Provides a registration ID for a comporieat is about to be created.
Message data: fqn char[] Fully qualified name of the component
id integer Registration ID of the component. The valtiel must be non-
zero.
Sent by: Simulation system
Sent when: In response to eequestComponentl D message.
Received by: System that will manage the compowaenh it is created
On receipt: The receiving system must create the componenthamdsend it amitl message.
Name: returninfo
MsgType: 30
Summary: Provides a component with information alaouentity within the simulation.
Message data: queryid integer Message ID of thquerylnfo message to which this message is a
response
compid integer Component ID that owns the entity
id integer Registration ID of the entity about whioformation is being
returned
name char[] Fully-qualified name of the entity
type char[] If the entity is a component:

Text string giving the value of the component'sidtadtype
property (see section 5.1).

If the entity is a property or event:
DDML <type> element giving the type and units of #ntity

kind integer 1 denotes a driving property

2 denotes a readable owned property

3 denotes a writeable owned property

4 denotes a readable, writeable and owned property

5 denotes an event publisher

6 denotes an event handler

7 denotes a component

8 denotes a system component

9 denotes a property set request

Sent by: System

Sent when: In response to querylnfo message

Received by: Component (not necessarily managdbebgending system)
On receipt: Handled internally by the receiving pament

Common Modelling Protocol — 36—

Name: returnValue
MsgType: 31
Summary: Provides the value of a component's ptpp@ianother component.
Message data: compid integer ID of the component that owns the propestye that is being
returned in this message.
id integer Registration ID of the property for whickaue is being returned
(the value sent ad in thegetValue message that is being
responded to).
type char[] DDML <type> element describing the typelué value data
Value variant Value data, laid out in accordance withtyipe of the property.
Sent by: System that manages the component that origiresdlyeid etV alue message requesting the
value of the property.
Sent when: In response to eeplyValue message with queryidfield matching a previously dispatched
queryValue message.
Received by: Component.
On receipt: The component that originally requested the vahradlesr eturnValue messages according to its
internal logic.
Name: terminateSimulation
MsgType: 32
Summary: Initiates termination of the simulation.
Message data: (None)

Sent by:
Sent when:
Received by:
On receipt:

Any component.

At any time.

Simulation system
The simulation system is required to isswkifyTer minate messages to all components that it
manages, and to delete each component afteotis/ T er minate message has been
acknowledged.

Common Modelling Protocol - 37-

5. Standard Properties and Events

There is a set of properties that every componeist possess (R49-54). Also, the sequence diagrasetion
3 assume the existence of a number of certain piepand events. Hence there is a need in thegubfor a
set of "standard" properties and events.

5.1. Standard component properties

The set of standard properties is:

Name Type Readable Writeable Meaning

name char] Yes No Fully-qualified name of the compohen

type char[] Yes No Name of the component class (compbtype)

version char] Yes No Version of the component class

author char] Yes No Author of the component class

active integer Yes No Zero denotes an active compongunbsiive value denotes the
number ofactivate messages required to make the component
active.

state char[] Yes Yes SDML <component> or <system> elendescribing the current

state of the component or sub system.

« All components must own each of these properties.

« The value of thmame property is set during creation of a componens(trovided by the
returnComponentl D message returned to its managing system).

« The values of théype, version, andauthor properties are determined by the <module> elemiettte
SDML provided to the component at initialisatiorneTinitial value of thective property is set by the
"active" attribute of the <component> element.

5.2. Standard event handlers
The set of standard event handlers is:

Name Type Meaning

error fatal : boolean Notifies the rest of the simulation of the occunemf an error condition.
message : char[]

- The standard event is optional; however if a comepbpublishes or subscribes to a standard eventst
have the type and meaning set out above.

5.3. Time property

As noted in section 1, time has a special statsgnnlations of dynamic models. As with all numatic
integrations in time, computation of simulationgasried out using time intervals of finite lengttime steps").
Although time is inherently continuous, it is congtionally more convenient if time is quantised.

These considerations are taken into account iptbi@col via the standatiime property. The following
conditions apply taime:

« no more than one component in a simulation may thtime property (the sequencer); and

- it must take the record type set out below.

Common Modelling Protocol — 38—

Field Type Meaning

startDay integer Day number of the start of the time step

startSec integer Seconds past midnight of the start ofithe step (0-86399)
startSecPart double Fraction of a second of the start of thetatep (0.0-1.0)
endDay integer Day number of the end of the time step

endSec integer Seconds past midnight of the end of the 8iap (0-86399)
endSecPart double Fraction of a second of the end of the gtap (0.0-1.0)

Time steps are therefore represented in contintgyoss, but time steps down to one second can bewi#ain
a discrete fashion. A day number denotes the day) midnight to midnight, that contains the Juliay
Number (as used by the astronomical community) thighsame value. 9 October 1995 is day humber 2500

The component that owns ttiene property must update its value once per time Stap.values in thetartDay;
startSecandstartSecParfields after an update must equal the valueseértiitDay endSe@andendSecPart
fields before that update.

Common Modelling Protocol - 39-

6. Definition of data types

As discussed in section 3, the types of all prgp@ata and event parameters are passed with thesvial text
form using a data description language.

The protocol can denote data of the following types

« primitive data types such as character, integeatifig point, Boolean;
« record structures containing sequences of smgjbest

« multi-dimensional arrays.

Records and arrays may be nested within each dthéti-dimensional arrays are denoted as arrayariays.

XML (Extensible Markup Language) is a standard teage definition technology which can be used teides
complex structures. The data description languageblkeen implemented within XML and is thereforevnas
Data Description Markup Language, or DDML.

DDML is used in theeturnValue, publishEvent, event andretur nlnfo messages.
6.1. Data Description Markup Language (DDML)

XML grammars are defined using document type dpsoris. Here is the DTD for DDML:

<IELEMENT type (field+|element)? >
<IATTLIST type name CDATA " >
<IATTLIST type kind (integerl|integer2|integerd4i nteger8|single|double
|boolean|char|wchar|string|w string|defined) "defined">
<IATTLIST type array (T|F) "F">
<IATTLIST type unit CDATA "-">
<IELEMENT field (field+|element)? >
<IATTLIST field name CDATA " >
<IATTLIST field kind (integerl|integer2|integer4| integer8|single|double
|boolean|char|wchar]|string| wstring|defined) "defined">
<IATTLIST field unit CDATA "-">
<IATTLIST field array (T|F) "F">
<IELEMENT element (field+|element)? >
<IATTLIST element kind (integerl|integer2|integer 4|integer8|single|double
|boolean|char|wchar|strin g|wstring|defined) "defined">
<IATTLIST element unit CDATA "-">
<IATTLIST element array (T|F) "F">

Note that the "ddml" fields passed in the dataasfous messages are not complete XML documents;tppée>
elements from DDML, for example:

<type kind="double” array="T" unit="mm" />

which denotes an array of double-precision numbérsunits of mm.

The values of the "kind" attribute of the <typeeraknt denote the following:

Type Description

integerl Signed 8 bit integer

integer2 Signed 16 bit integer

integer4 Signed 32 bit integer

integer8 Signed 64 bit integer

single IEEE single precision floating-point numi§&? bits)
double IEEE double precision floating-point numfgt bits)
boolean Boolean value

char Character (8 bits)

wchar Unicode character (16 bits)

string String of characters

wstring String of Unicode characters

defined A record or array definition laid out inghype definition

A type or sub-type is an array if the <array> htite equals "T".

In addition to conforming to the DTD, a documentsirfiollow these rules to be valid DDML:

Common Modelling Protocol —40-

1. Ifthekind attribute of a <type>, <field> or <element> elemnequals "defined" and i ray attribute
equals "T", then it must contain exactly one <eletaelement and no other elements. In this case the
<element> element defines the type of the elenwfras array.

2. Ifthekind attribute of a <type>, <field> or <element> elemnequals "defined" and i&rray attribute
equals "F", then it must contain zero or more dfieélements and no other elements. In this case the
<field> elements define the types of the members refcord.

DDML in general, and type names in particular, @ase sensitive.
6.1.1. Examples of type elements
(8) 4-byte integer, no units

<type kind=" integer4d " />

(b) 2-dimensional array of temperatures

<type array=" T">
<element kind=" double "array=" T"unit=" oC" />
</type>

(c) Named record type containing scalar and aiedgts

<type name=" a_record" >

<field name=" height " kind=" double " unit=" mrh />
<field name=" apples " kind=" integer2 "array=" T" />
<field name=" conductivity "kind=" single " unit=" ds/m" />
</type>

(d) Character string (character array)
<type kind=" string "/>

is equivalent to
<type kind=" char "array=" T"/>

(e) Named type: array of records

<type name=" supplements "array=" T">

<element>

<field name=" name" kind=" string "/>

<field name=" dmd' kind=" double "unit=" % />
<field name=" ME2DMkind=" double "unit=" MJ/kg "/>
<field name=" cp" kind=" double "unit=" % />
</element>

</type>

6.2. Units in properties and events

As described in sections 2 and 3, integer- andvalaled quantities in the protocol have units. Haite
expressed as character strings. Text and Booleamtitigs do not have units; “unit” DDML attributaésany
messages describing variables of these types sheulisregarded.

6.2.1. Units for real values

Only certain unit strings are valid for real-valugahntities. The set of valid unit strings is geed by the
grammar set out below. The principles on which ¢glh&nmar is based are as follows:

« In general, Sl units are used. Non-SI metric uaniesalso permitted.
- Units are constructed from a restricted numbeibake" SI units by applying scaling prefixes and @mw
and by combination into products and ratios.

- Integer, decimal and rational representations ofgre are permitted. Where an exact integer reptasem

exists, it is used. Otherwise, where an exact daldiepresentation exists it is used (e.g. 0.753/t All
powers are positive; negative powers are denotaéfngsenting the unit in the denominator of aorati
« Where a unitis a ratio, all terms in the denonanatust follow all terms in the numerator.
- Either ™" or "%" (where appropriate) are used to denotéliallensionless quantities.

Common Modelling Protocol —-41-

The null or empty string is a valid unit. It is eeged to denote situations where the unit is unknomnany
unit is acceptable.
The grammar may only be extended in future by edimanthe set of "base" units.

<uni t> = [<ternp{''< ternp}l{ < termp} | | '%'

<ternp = [<scal e>] <scal abl e-uni t>[' < power >]
| <non- scal abl e-unit>[" < power >]

<scal abl e-uni t > n='g ['m" |'s" |'K" |'A" | 'mol' |'cd'

| rad |'sr' |'Hz' |'N" |'Pa" |'J" |'W'|'C" |'V' |'F' | 'ohm'

['S" |'Wb' |'T" |'H" |'oC' |'Im" |'IX' |'Bq" |'Gy" |'Sv' | 'kat'
[t [T |['min" |'h" |'d" |y

<non- scal abl e- uni t >::='rad' | 'sr' | 'deg' | 'ha'

<scal e> m='p ['v |'m' |'¢ |'d |'D |'h |'kK |'M|'G |'T

<power > =< i nteger> | <decimal> | <integer>/< integer>

<deci mal > u= [<digit>{<digit>}] "< digit>{<digit>}

<i nt eger > =< di git>{<digit>}

<digit> n='0 .9

Notes

Unit strings are case-sensitive; whitespace is fran(and ignored).
Base units and their dimensions are as follows tfg@@ppendix for more detail on dimensions and S
units):

g gram M Wb weber M T2t
m metre L T tesla M T?it

S second T H henry EMT?i?
K kelvin 0 oC degree Celsius 0

A ampere [Im lumen I

mol mole n Ix lux L2

cd candela I Bq becquerel T

rad radian - Gy gray 1212

sr steradian - Sv sievert 1>T?

Hz hertz T kat katal T'n

N newton LMT? t tonne M

Pa pascal M T? | litre L3

J joule LPMT? min minute T

W watt LMT?® h hour T

C coulomb Ti d day T

\Y volt LM T3t y year T

F farad L2M™* T4 deg degree -

ohm ohm EMT3? ha hectare E

S siemen M T3

The "u" scaling factor denotes "micro" (90Other scaling prefixes have their usual meanings

The tokens "/" and "." are each used with two déf¢ meanings, but the meaning can always be digtedm
from the following token.

"%" must be used alone; for example, "%/d" is neakd unit.

Examples of valid units for real variables

hPa scaled unit

MJ/m~2/d ratio with two terms in the denominator

/s no numerator

kg™0.75 orkg”™.75

m~1/3 but notm”1/2 , which is grammatically correct but should be giasm”0.5
g.m/s"2 but notm/s”"2.g as numerator terms must precede denominator terms

Common Modelling Protocol — 42—

6.2.2. Units for integer values

Any string constitutes a valid unit for an integeriable.

6.2.3. Unit compatibility

The units of two real values aidentical if the same terms appear in the numerator and dieaton. The order
of the terms is not considered when assessingitgéatg. "s.m" and "m.s" are identical units).

The units of two real values atempatible if they have the same dimension.

If an integer value has a unit that is a productibthe above grammar, then the same rules fotitgteamd
compatibility apply as for real values. Otherwigeits of integer values are identical only if thenmit strings
are identical (case-sensitive) and are compatiblg ibthey are identical.

Common Modelling Protocol — 43—

7. Simulation Description Markup Language (SDML)

As described in section 3, simulations and the aomapts they contain are initialised using inforimatheld in a
text format. The simulation description languagénéel here gives the following information:

« the structure and interactions of the simulatianluding the initial list of systems and components

« the name of the simulation and each system;

- optionally, registrations for variables and eventbe used in the simulation;

« information required to initialise the values otkaomponent's properties.

The simulation description language has been difivithin XML and is therefore known as Simulation
Description Markup Language, or SDML.

7.1. Specification of SDML

The document type description is:

<IELEMENT simulation (sdmlversion, (system|componen t)+) >
<IATTLIST simulation name CDATA "simulation" >

<IELEMENT sdmlversion (#PCDATA)>

<IELEMENT system (location?, executable?, initdata? , (system|component)*)>
<IATTLIST system name CDATA #REQUIRED >
<IATTLIST system active (T|F) "T">
<IATTLIST system class CDATA #REQUIRED >

<IELEMENT component (executable, initdata?)>
<IATTLIST component name CDATA #REQUIRED >
<IATTLIST component active (T|F) "T">
<IATTLIST system class CDATA #REQUIRED >

<IELEMENT location (#PCDATA) >

<IELEMENT executable EMPTY >
<IATTLIST executable name CDATA #REQUIRED >
<IATTLIST executable version CDATA >

<I[ELEMENT initdata (#CDATA) >

Any component that can be system must use theemaystag even when no child components currentlstexi
The contents of <location> and <executable> elesnenBDML documents are case-insensitive. <initdata
elements are case-sensitive. The contents of "nanmgk"version" attribute values are case-insemgsitiv

7.2. Simulation structure in SDML

SDML denotes the structure of a simulation by medneested <system> and <component> elements wittlein
<simulation> element. An example is given in Figéré. Each simulation has a name.

<simulation name=" Example simulation 1 ">
<sdmlversion>1.0</sdmlversion> Example Simulation 1
<component name=" sequencer " class="sequencer’/>
</component> sequencer
<component name=" weather " class="weather"/>
</component>
<system name=" paddockl " class="paddock”/> ... weather
<component name=" water” class="water balance”/>
</component> paddockl
<component name=" phalaris " class="pasture”/> ...
</component> water phalaris clover
<component name=" clover " class="pasture"/>
</component>
</system>
<system name=" paddock2 " class="paddock’/> ... paddock?2
<component name=" water " class="water balance”/>
</component> water fescue clover
<component name=" fescue " class="pasture”/>
</component>
<component name=" clover " class="pasture"/>
</component>
</system>

</simulation>
Figure7.1. Representation of the structure of a simulatioSIML.

Common Modelling Protocol — 44—

7.3. Component and system initialisation in SDML

Components are specified in SDML by means of <carept> and <system> elements. These elements must
contain:

- a'"name" attribute that gives the name of the corapt and

« an <executable> element that gives the name okecuéable file containing the component logic.

They may also contain:
« an <initdata> element containing all initial valugsa format that is intelligible to the componént that is
not specified within the protocol.

The <executable> element determines the valuecofrgponent's type as returned inetur ninfo message; for
example all components using a module called "sadwdlIl" might have the type "Soil Water". Diffeite
modules may implement components of the same type.

A <system> element may also contain a <locatioeeht that specifies a machine on which the syst¢mbe
executed. If this element is not given, the samehin@ as the containing system is used.

The "active" attribute specifies the initial valokthe standardctive property.

Common Modelling Protocol — 45—

8. Other elements of protocol messages
8.1. Names

Simulations, components, properties and events hares that are used to denote them in certainragessnd
in SDML.

Names are composed of alphanumeric characterdanchtlerscore (
comparisons are case-insensitive.

). When names are compared,

Names may be "qualified" to reduce or eliminate igty. Component names are qualified by precediiegn
by the name of the system of which they are a pattt,a "." separator, e.g. "system.component”sTitbcess

of qualification may be recursed, e.g. "system.gstiesn.component”.

Property and event names are qualified by precatigng by the name of the component of which theyaar

part, again with a "." separator. (The componenteanay itself be qualified, so that
"system.component.property” is a valid qualifiednea

A qualified name that begins with the name of a jgonent managed by the simulation system is destebe
"fully qualified" as it has no possibility of amhiigy. The qualified name of a component is sertha
requestComponentl D message, and fully qualified names for componemtseturned in the
returnComponentl D message when a component is being created. Tindastlname property returns a fully
qualified name for the component.

"Checkpoints" also have names. These names mawyttex string that can specify a storage locatiithin
the operating system in which the protocol is immated.

8.2. Registration identifiers

Components, properties and event handlers alsoihtager ID values that are also used to denota the
messages. Component IDs are used as message addsegssection 9.1). ID values are used in mostages
for reasons of efficiency.

Each component is responsible for assigning IDeslts properties and event handlers. Each propégy
component must have a distinct registration IDnast each event. It is permitted for a propertgttare its ID
with an event, as the protocol messages alwaysicoatcontext that makes the distinction clear.

The simulation system is responsible for assigfiingalues to components. Each component in a siiounla
must have a distinct registration ID.

8.3. Message identifiers

Every message has an integer identifier that igiasg by the sender. Every message sent by a canpomst
have a unique value for the identifier, so thatdtaered pair (sender, message ID) identifies asagesuniquely
in the simulation.

8.4. Property and event matching

Where the sources for a driving variable or thesstiptions to an event are not specified by thaikition
writer, the component's owning system must iderlki&/properties or events in other componentsrifadth it.
To match, two properties or events must have threeseame (case-insensitive).

Regardless of whether sources or subscriptiondetsrmined by the simulation writer or a system,tipe of
source properties or event publishers must alsmimpatible with the type of driving properties or event
handlers. A type is compatible with another ifadue of the first type contains all the informati@ugjuired to
construct a value of the second type:

- Both types must be scalars, arrays, or records.

Common Modelling Protocol — 46—

« If they are scalars, the following table applies:

Second type

intl int2 int4 int8 sgl dbl boolean char wchar str wstring
intl X X X X
int2 X X X X
int4 X X X X
int8 X X X X
sgl X X
dbl X X
boolean X
chr X X X
wchar X
str X
wstring

First type

X X X X

Also, the units of the two scalars (where applieabhust be compatible as defined in section 6.2.3.

- If they are arrays, then the type of elements effilst array must be compatible with the type leheents of
the second array.

- If they are record structures, then for every figldhe second type there must be a field in tfe fype that
has the same name and a compatible type.

« A special case applies for record structures paissttetparamsfield of event messages. In this case the
type of the event data is compatible with the tgpthe handler only if:

(a) for every field of the event handler typeheit
- there is a field in the event data type thatthassame name and a compatible type; or
- the component implements a default value foffitid

and

(b) every field in the event data type matche®H fin the event handler type. Note that this ctiowli
prevents event handlers from taking a subset ahttmming data, as permitted in other contexts.

The final rule provides a mechanism for implemamntwents with default parameters. The componerarijésr
routine (section 9.2) provides the default valuesvent parameters.

Note that type compatibility is not a transitivéateonship.

Protocol implementations may place further restie on the matching of properties and eventsudiob
further restrictions on type compatibility.

Common Modelling Protocol - 47—

9. Implementation of the protocol

9.1. Layout of messages

Messages in the protocol are composed of a headanassage data. The two components need not be
contiguous in memory.

9.1.1. Message header
The header of all messages has the same strugivea, in the following table:

Field Denotes Type

Version Protocol version number. The high-ordeelftthis word denotes a 2-byte word
major version number and the low-order byte a mugrsion
number. This version of the protocol is 1.0.

MsgType Unique ID denoting the type of the messafés must take a value 2-byte word
from the table of message types in section 4.

From Originating component, denoted by its regigtralD. 4-byte integer

To Destination component, denoted by its registralD. 4-byte integer

MsgID Message identifier (see section 8.3) 4-bpteger

Acknowledge Flag denoting whether an acknowledgémessage should be 4-byte word

returned to the originating entity on completiomu#ssage
processing (zero = no, non-zero = yes). This field been given a
length of 4 bytes to maintain word alignment.
NDataBytes Number of bytes in the data componetti@fmessages. 4-byte word
DataPointer Pointer to the message data compaohkeistpointer is NULL if 4 bytes
NDataBytes is zero.

9.1.2. Message data

Each field of the message data is laid out secaignin a contiguous block of memory. Message dialds are
typed. The type of a data field must either be afre finite set of primitive types, an array ofypé, or a
structure containing sub-fields (each with its dype).

Certain messages contain a field that denotes typlegs. The data in these fields ("event" andprty" data
within the "message" data) are laid out accordinthé same rules as for message data.

Data of primitive types occupy blocks of memonttod following sizes:

Type Size (bytes) Type Size (bytes)
Boolean 1 Single 4

Byte 1 Double 8

Short Integer 2 ASCII Character 1
Integer 4 Unicode Character 2
Long Integer 8

Text strings (ASCII or Unicode) are representeth@ssage data as arrays of characters. They hane bee
included in DDML for convenience.

Boolean values are False when the integer valtieedield is zero.

Arrays are laid out as the number of array memgklgste integer), followed by each array member
concatenated together. All multi-dimensional arrayeluding arrays of text strings - are represdrds arrays
of arrays.

Records are laid out with each member concatenated.

9.1.3. Examples of arrays

(a) One-dimensional array of integers: [5, 87,

Dim=4 5 6 7 8

4 4 4 4 4

Common Modelling Protocol — 48—

(b) Text string, represented as an array of charatuick"

Dim=5 | "Q" | "u" | "i" | "c" | K"

4 1 1 1 1 1

10| |40
(c) Array of array of double-precision real valugs20| |50
30| |60

Dim=2 | Dim=3 | 10.0 20.0 30.0 | Dim=3 | 40.0 50.0 60.0

4 4 8 8 8 4 8 8 8

(d) Array of leaf areas within an array of tillers:

TlLlH T2L1HT3L1 }—{T4L1\

T1L2\ \Tsz\ \T3L2\ \T4|_2\

T1|_3\ \T2L3\ \Tsl_s\

T1L4

‘Dim:4 ‘ Dim=4‘ TlLl‘ TlLZ‘ T1L3 ‘T1L4 ‘Dim:S‘ T2L1‘ T2L2‘T2L3 ‘Dim:S‘ T3Ll‘ T3L2 ‘TSLS ‘Dim:2‘ T4Ll‘ T4L2‘

4 4 8 8 8 8 4 8 8 8 4 8 8 8 4 8 8

(e) Array of text strings, represented as an asfayray of character: ["Quick", "brown", "fox"]

Dim=3 Dim=5 uQu "y i nen Ul Dim=5 "p" nypn "ot “w" " Dim=3 ngn "ot et

4 4 1 1 1 1 1 4 1 1 1 1 1 4 1 1 1

Common Modelling Protocol — 49—

9.2. Component descriptor routine

The executable module that implements a comporentts (i.e. the executable referred to in the <oled
element of the component's initial SDML) must hagepart of its interface a function that returriieacription
of the component. The function is intended for g¢he software that is used for writing simulatofmhe
format for component descriptions is part of thetpcol.

Component descriptions are XML documents confornbintipe following DTD:

<IELEMENT describecomp (executable, class, version, author,
system?, property*, event*) >

<IELEMENT executable (#PCDATA)>
<I[ELEMENT class (#PCDATA)>
<IELEMENT version (#PCDATA)>
<IELEMENT author (#PCDATA)>
<IELEMENT system EMPTY >

<IELEMENT property (type, description)>
<IATTLIST property name CDATA >
<IATTLIST property descr CDATA >
<IATTLIST property access (read|both|write|none) "read">
<IATTLIST property init (T|F) "F" >

<IELEMENT driver (type, description)>
<IATTLIST driver name CDATA >
<IATTLIST driver descr CDATA >
<IATTLIST driver minsrc CDATA "1">
<IATTLIST driver maxsrc CDATA "1">

<IELEMENT event (field*, description)>
<IATTLIST event name CDATA >
<IATTLIST event descr CDATA >

<IATTLIST event kind (published|subscribed) "pub lished" >
<IELEMENT type (field+ | element+ | (defval,minval ?,maxval?))?)>
<IATTLIST type kind (integerl|integer2|integer 4)integer8|single|double|boolean
|char|wchar|string|wstrin g|defined) "defined">

<IATTLIST type array (T|F) "F">
<IATTLIST type unit CDATA "-">

<IELEMENT field (name, (field+ | element+ | (defv al,minval?,maxval?))?)>
<IATTLIST field name CDATA "™ >
<IATTLIST field descr CDATA >
<IATTLIST field kind (integerl|integer2|integer 4)integer8|single|double|boolean
|char|wchar|string|wstrin g|defined) "defined">
<IATTLIST field array (T|F) "F">
<IATTLIST field unit CDATA "-">

<IELEMENT element (field+ | element+ | (defval,min val?, maxval?))? >
<IATTLIST element kind (integerl|integer2|integer 4)integer8|single|double|boolean
|char|wchar|string|wstrin g|defined) "defined">

<IATTLIST element array (T|F) "F">
<IATTLIST element unit CDATA "-">

<IELEMENT defval (#PCDATA)>
<IELEMENT minval (#PCDATA)>
<IELEMENT maxval (#PCDATA)>
<IELEMENT description (#PCDATA)>

« The <executable> element gives the location okttecutable module providing the description.

« The <class>, <version> and <author> elements shetilgin the values of thgpe, ver sion andauthor
standard properties.

« The <property>, <driver> and <event> elements gif@mation about the component type's owned
properties, driving properties, and event handiespectively. Some component instances may hatteefur
properties and events defined at run-time; thesear included in the description.

Common Modelling Protocol - 50-

« The "access' attribute of a <property> element denote whetherproperty is readable, writeable or both or
neither. The thit" attribute denotes whether it may appear in thmagmnent's initializing SDML. “T”
means that it is optional and “F’ means that it wit appear.

« The 'minsrc" and 'maxsrc” attributes of a <driver> element give the ranfieeplies to a request for that
property which the component will accept. Theirisrc" attribute must denote a non-negative integer; the
"maxsrc" attribute must either denote an integer gredi@n or equal to that denoted by tineirisr c"
attribute, or else be the null string (which metnag the property has no maximum permitted number o
sources). The integer values are parsed accordlithgtrules for <defval> elements below.

« The type information for events is denoted astafifields so as to force each parameter of tleneio
take a name.

« The <type>, <field> and <element> elements clofalpw the structures used in DDML.

- The optional <defval> elements provide default galulhe interpretation depends upon the element in
which they are found:

<property> Default value for the property or pragenember. Particularly useful when
the "init" attribute is set to "T".

<driver minsrc = "0"> Value that the component widle for the driving property in the absence of a
source property.

<event kind = "subscribed"> Default values usedmhet all parameters of the event handler are
transmitted in an event; see section 8.4.

In other cases, <defval> elements are ignored.

« The contents of <defval> elements for must folltv following rules:

integerl Text must be an integer in decimal notation, i.pra@uction from the following grammar:
integer2 < integer>:= [“ |+]<digit>{<digit>}
integer4 , < dl gl t> ::: IOI | I1I | I2I | I3I | I4I | I5I | I6l | I7I | I8l | I9I
integer8
single Text must be a real number in decimal or exponkntitation, i.e. a production from the
double following grammar:

<real> =< integer>["' {<digit>}]['E' |'e'< integer>]

char ,wchar Text must be a single character from the appropaharacter set.

string Any text from the appropriate character set is [iteoh
wstring
boolean Text must be a production from the following gramma
< bool ean>:= 'TRUE' FALSE|' true '|' false '

« Numeric <property> elements may also give minimunt mmaximum legal values in <minval> and
<maxval> elements respectively. Their contents rfalktw the rules for valid <defval> elements. Thes
elements are ignored in other contexts.

« The “descr” attribute is designed for short description temtl is advised to be kept to 50 characters or less.

Common Modelling Protocol —-51-

10. Component Implementation Techniques
10.1 Common implementation interfaces for Microsoft Windows

In order to permit a component developed by onarigation to be used by simulation software frotreot
organizations, the following interfaces must bevjited by protocol-compliant components implemented
Microsoft Windows. These interfaces should be régdras a prescription for protocol implementationder
other operating systems.

The__stdcall calling convention described here assumes thaixtperted function names are not mangled
and do not have leading underscores. All functlmelsw use thetdcall calling convention.
10.1.1. Interface for simulation design and congtian

Protocol-compliant components must be implementigadmMindows as dynamic link libraries. Each
component executable must export the following fioms.

(a) Component description interface

void getDescriptionLength(const char* szContext,
int* ILength)

void getDescription(const char* szContext,
char* szDescription)

Returns the length of the component
description in bytes, excluding the final
null character

Returns a null-terminated string
containing the component description as
set out in section 9.2.

The szContext parameter is designed to allow potgiio components specify a description based oaildet
within the character string. The contents of thigig are implementation specific and if not usieshiould be an

empty string.

(b) Initialisation script interface

As described in section 7, the initialisation imf@tion provided to a component in the SDML docungtre
“initialisation script” for each component) is if@mat that is not known to the rest of the sirtiola These
routines form an interface for building and pardimg component-specific initialisation scripts frommme, type

and value data.

Initialisation scripts are understood to be compazmaly of initialised properties, each of whiclc@mmposed of a
name, a type and a value. Note the use of charsitiegs to denote multiple instances of initiaiisa scripts for

a particular component.

void createlnitScript(const char* szScriptName)
void deletelnitScript(const char* szScriptName)

void initScriptLength(const char* szScriptName,
int* ILength)

void textTolnitScript(const char* szScriptName,
char* szScriptText)

void textFromInitScript(const char* szScriptName,
const char* szScriptText)

void valueTolnitScript(const char* szScriptName,
const char* szPropertyName,
const char* szTypeDDML,
void* pValueData)

Common Modelling Protocol - 52—

Create a new initialisation script.
Delete a previously created script.

Length of a script in bytes, excluding
the final null character

Sets the contents of an initialisation
script using a component specific
format. The properties in this text will
be appended to the list of any existing
ones in this script.

Returns the contents of an initialisation
script

Sets an initial value within an
initialisation script. szTypeDDML
denotes the type using DDML;
pValueData is a pointer to value data
laid out as for message value data
(section 9.1).

int valueFromlInitScript(const char* szScriptName, Returns an initial value from an
2823 gﬂg:i 25?;%%%3’”?1& initialisation script. szTypeDDML
void* pValueData) denotes the type using DDML,
pValueData is a pointer to value data
laid out as for message value data
owned by the component (section 9.1).

The return value is the number of bytes
in the pValueData location.

(c) Name of the wrapper DLL

As described below, each component DLL has a “wedppLL that implements an interface, between the
simulation software and the component DLL, for pagsessages.

void wrapperDLL(char* szWrapperDLL) Returns the name of the “wrapper” DLL. If
szWrapperDLL is null or zero length, the
simulation assumes that the component DLL
acts as the “wrapper”..

10.1.2. Component wrapper DLLs

As an aid to implementation, the common interfesgimes that a “wrapper” DLL interposes between the
simulation implementation and the component DLLpeno In all protocol implementations, internal campnt
logic must be carried out by passing the messagiiing the logic to the wrapper DLL; the wrapperIDihen
passes the message contents to the logic DLL blemgntation-specific means. A component DLL mayaact
its own wrapper.

The result is that any Windows protocol (simulatiystem) implementation will be able to load andaexe any
component.

(simulation.dlIl)

SimSystem
| | <<4—)p Common
System1 Comp2 wrapper i/f
€9—@ Implementation-
| A | A o—e specific if's
Comp1l1l Compl2
A A
(system1.dll) E E (comp2.dll)
(comp1.1.dll) i (wrap-pi.dll) (wrap-aps.dll) (comp12.dl)

Figure 10.1. Component DLLs and their wrappers interacting i protocol.

In the above diagram, the wrap-pi.dil shows a campbdwrapper implemented by CSIRO-PI and the wrap-
aps.dll show a wrapper implemented by APSRU. Edichase wrappers will export the same functionthst
the simulation.dll binary has a consistent intezfa any functioning simulation components. Therifatces
between the wrapper DLL's and the component bimaan be of a proprietary nature.

Common Modelling Protocol - 53—

Providing communications between the smulation dIl and the logic components.

A callback function is provided in the simulatiolhfdr messages sent to it from any logic dll (aapper class).

This callback follows this definition:

typedef _stdcall void (MCB)(const unsigned int *quimst, TMsgHeader *message);

wherecomplnstpoints to the component instance in the simulatibandmessaggoints to the

message header being sent.

The component wrapper DLL's must export the foltgywoutines:

__stdcall void createlnstance(
const char *szLogicDLL,

const unsigned int *IComplD,

const unsigned int *IParentComplID,

unsigned int *linstancelD,
const unsigned int *complnstance,
MCB *messageCallback);

__stdcall void deletelnstance(
int* linstancelD)
__stdcall void messageToLogic(

unsigned int *linstancelD,
TMsgHeader* message,
bool* bProcessed)

Creates an instance of a component.

szLogicDLL is the name of the DLL containing the
component logic (input);

ICompID is the instance’s registration ID
(input);
IOwnerlD is the registration ID of the system

that manages the component (input);

lInstancelD is a unique identifer used in later calls
to the interface (output). Pointer to
the instance of the logic dll (or
wrapper class).

complnstance pointer to the instance of the
component within the system making
this call.

messageCallback function pointer to the entry theo
system for messages sent back into
the system.

Deletes the component instance denoted by
lInstancelD

Passes a message to the component instance denoted
by linstancelD . bProcessed returns TRUE i.f.f.

the component logic has carried out all processing
necessary for the message.

« Memory management: The receiver of any messagsstmne simulation dll — wrapper interface must take
copy of the message. The sender keeps ownerstiie ofiessage and can delete it after it has beén sen

« The definition ofTMsgHeader follows the layout of the message header in se&ia.

- Because multiple simulations may be running corely and using the same wrapper DLL, the component
registration ID (which is only unique within a slagimulation) is insufficient as a unique instance

identifier.

« Knowing whether or not a message was processeaebgomponent logic is useful in the implementatibn

services.

10.1.3. Distributing the Simulation over more tlare machine.

To enable the sharing of the simulation componews more than one machine address space it weuld b
possible to build a component binary which actaramterface to another component residing on @¬h

machine.

Common Modelling Protocol

System

/

Component alias

Communications
lavel

Machine
boundary ~ T TTTTTTTTTTTTTTTTTTION TS

Component
logic

Figure 10.1 Logical view of a distributed system

Common Modelling Protocol — 55—

10.2 Note on system implementations

In the majority of cases, a system that receiv@gssage responds by routing it toward its destinati
component. If the receiving system manages théndgisin component, this is straightforward. If nibig
receiving system will require some means of deteimgi whether the message should be routed

(a) "up" to the system that manages the currem¢sys system; or

(b) "down" to the system of one of the sub-systefrte system managed by the system.

Note: The Pl implementation ensures that a system kmdvich components belong to it at any level. Because
the components are all registered with the Sinatatia calls routed through parent systems, ibisdifficult
for a System to store the ID's of any owned comptme

Common Modelling Protocol — 56—

11. References
Beek J & Frissel MJ (1973%imulation of nitrogen behaviour in soiBUDOC, Wageningen.

Brouwer R & de Wit CT (1968). A simulation model@fnt growth with special attention to root growttd
its consequenceBroceedings of the f5Easter School of Agriculture Scien@24-242.

Christian KR, Freer M, Davidson JL, Donnelly JR &mwstrong JS (1978%imulation of grazing systems.
PUDOC, Wageningen.

Donnelly JR, Moore AD & Freer M (1997). GRAZPLANedision support systems for Australian grazing
enterprises. |. Overview of the GRAZPLAN projeatdaa description of the MetAccess and LambAlive
DSS.Agricultural System5§4, 57-76.

Freer M, Davidson JL, Armstrong JS & Donnelly JRTQ). Simulation of summer grazirgroceedings of the
Xl International Grassland Congres813-917.

McCown RL, Hammer GL, Hargreaves JNG, Holzworth&®Preebairn DM (1996). APSIM: a novel software
system for model development, model testing, amdilsition in agricultural systems research.
Agricultural System§0, 255-71.

O'Neill RV, De Angelis DL, Waide JB & Allen TFH (B®). A Hierarchical Concept of Ecosysten®inceton
University Press, Princeton NJ.

Common Modelling Protocol - 57—

Appendix: Dimensions and Sl Units

There is a difference betwedimensions andunits. A dimension is a measure of a physical variabithput
numerical values), while a unit is a way to assigrumber or measurement to that dimension. For gbeam
length is a dimension, but it is measured in uniitteet (ft) or metres (m).

Primary dimensions are defined as independent or fundaingéimensions, from which other dimensions can
be obtained. There are seven primary dimensions:

Primary Dimension Symbol S| unit
Mass M g (gram)
Length L m (metre)
Time T s (second)
Temperature 0 K (Kelvin)
Electric current i A (ampere)
Amount of light I cd (candela)
Amount of matter N mol (mole)

Other dimensions and units aterived from the primary dimensions and units as prodantspowers. The Sl
system defines a further 22 derived units:

Definition using

Derived quantity Name Symbol primary units
Plane angle radian rad m'ne 1
Solid angle steradian sr ‘m?=1
Frequency hertz Hz g
Force newton N m kg3
Pressure, stress pascal Pa hys?
Energy, work, quantity of heat joule J nf kg $°
Power, radiant flux watt w fikg $°
Electric charge, quantity of electricity coulomb C sA
Electric potential difference, electromotive forcevolt \Y; m? kg s° A
Capacitance farad F kgt st A?
Electric resistance ohm Q m? kg s° A
Electric conductance siemens S Chyls$Aa?
Magnetic flux weber Wb frkg s> A™
Magnetic flux density tesla T kgfA™?
Inductance henry H frkg s? A
Celsius temperature degree Celsius °C K
Luminous flux lumen Im mm?cd = cd
llluminance lux Ix M m* cd = n¥¥ cd
Activity (of a radionuclide) becquerel Bq s
Absorbed dose, specific energy (imparted), kermay gr Gy nf s?
Dose equivalent (d) sievert Sv ?gf
Catalytic activity katal kat “Smol

The above table has been taken from the US Natlostidute of Standards and Technology website:
http://www.physics.nist.gov/cuu/Units/units.html

Common Modelling Protocol — 58—

